
Determine the stress on megasplay in the Nankai trough
This is derived from the course project of Kaitlin Scheibe in 2022.

clc, clear
% Geographic coordinate system
e1_ned = [1;0;0]; % North
e2_ned = [0;1;0]; % East
e3_ned = [0;0;1]; % Down

E_ned = [e1_ned,e2_ned,e3_ned];

% Plotting coordinate system
e1_xyz = -e1_ned;
e2_xyz = e2_ned;
e3_xyz = -e3_ned;

E_xyz = [e1_xyz,e2_xyz,e3_xyz];

A = change_basis_tensor(E_xyz);

Note: In this example we are using three different reference frames:

1. Geographic reference frame: North, East, Down (NED), 
2. Principal reference frame of the stress field, 
3. Standard plotting reference frame (XYZ)

The exercise is mostly concerned with transformations between the first two,  and . The transformation 
to the third frame is hidden in the plotting routine.

Geological setting
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), a scientific drilling project conducted by 
the IODP, has spent over a decade drilling, sampling, imaging, and instrumenting the Nankai subduction zone, 
offshore Japan, with one of the primary goals of quantifying stress conditions along the plate boundary (Figure 
1). The Nankai Trough is created by the subduction of the Philippine Sea plate beneath the Eurasian plate and 
is located southwest of the Kii Peninsula, Japan. Historically, the Nankai Trough has hosted magnitude 8.0 and 
greater seismic events and is one of the most tectonically active regions on Earth. 
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Figure 1:  top) Site map of the IODP NanTroSEIZE drilling sites, southeast Japan. bottom) Seismic cross 
section showing the Nankai subduction zone, accretionary wedge. Site C0004 is highlighted in orange, and the 
borehole crosses the Megasplay thrust fault. 

Geometry of the thrust fault
In 2004, the Integrated Ocean Drilling Program (IODP) drilled Site C0004 with the primary objective of 
accessing the shallow portion of a major thrust fault in the accretionary wedge, termed the megasplay fault. 
At site C0004 the megasplay fault is crossed at 300 meters below sea floor (mbsf). The megasplay fault strikes 
60°-240° and dips 20° to the NW (Moore et al., 2009). 

% North-East-Down base vectors
dip_rad = deg2rad(20);
strike_rad = deg2rad(240); 
Q = @(r,theta) r*r' + cos(theta)*(eye(3) - r*r') + sin(theta) *[0 -r(3) 
r(2);r(3) 0 -r(1);-r(2) r(1) 0];
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QD = Q(e1_ned,dip_rad); % should this have a minus sign?!?
QS = Q(e3_ned,strike_rad);

% Strike
m_ned = QS*e1_ned;
% m_xyz = A*m_ned;

% Normal to fault plane
n_ned = QS*QD*(-e3_ned)

n_ned = 3×1
    0.2962
   -0.1710
   -0.9397

% n_xyz = A*n_ned

[fault] = plot_fault(n_ned,m_ned,E_xyz);
view([72.65 26.13])

Note that in this plot we are using a third refeerence frame, the standeard XYZ frame used in all Matlab 
plotting routines, therefore you cannot directly compare the representation of the vectors we computed in the 
geographic reference frame!

Determining the local stress field
Stress mangnitudes
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At the time of drilling, resistivity at the bit (RAB) images were collected, which give a visual image of what 
the borehole looks like while being cored (Figure 2). RAB images provide information about wellbore failures 
(breakouts and tensile fractures). The width of a breakout can be used to calculate a range of horizontal far field 
stresses that result in the tensile failure of the wellbore wall. 

Far field horizontal stresses are calculated from the borehole breakout widths at 300 mbsf. The azimuth of the 
breakouts is 50° and 230°. The magnitude of horizontal stresses are: 

• minimum horizontal stress: Shmin = 5 MPa
• maximum horizontal stress: SHmax = 9.5 MPa 

Assuming a bulk density of 1360 kg/m^3 for the overlying sediments and gravitational acceleration of 9.81 
m/s^2 the vertical stress is

Sv = 1360*9.81*300/1e6 % [MPa]

Sv = 4.0025

The principal stresses and the representation of the stress tensor, , in the principal coordinate frame, , 
are therefore:

sig1 = 9.5; % [MPa] SHmax
sig2 = 5;   % [MPa] Shmin
sig3 = Sv;  % [MPa] Sv

sig_pri = [sig1 0 0;...
           0 sig2 0;...
           0  0 sig3];

Principal stress directions
We know that the vertical stress is, well vertical, and we know the direction if the minimum horizontal stress 
from the breakouts. These are the third and second principal directions respectively. We can obtain the first 
principal direction from the cross product.

% Second principal direction
strike_Shmin = deg2rad(230); 
QS_Shmin = Q(e3_ned,strike_Shmin);
v2_ned = QS_Shmin*e1_ned;

% Third principal direction
v3_ned = e3_ned;

% First principal direction
v1_ned = cross(v2_ned,v3_ned);

cross(v1_ned,v2_ned)'*v3_ned;
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E_sig = [v1_ned,v2_ned,v3_ned]

E_sig = 3×3
   -0.7660   -0.6428         0
    0.6428   -0.7660         0
         0         0    1.0000

Here we have put the three principal stress directions in the geographis reference frame, , into the columns 
of a matrix.

Stress tensor in the geographic reference frame
To compute the stress on the fault we need the stress tensor in the geographic reference frame,  (NED). To 
transform the stress tensor we need the change in basis tensor, , to obtain 

% Stress tensor in geographic reference frame
A = change_basis_tensor(E_sig)

A = 3×3
   -0.7660   -0.6428         0
    0.6428   -0.7660         0
         0         0    1.0000

Note that the the columns of the change in basis tensor, , are equal to the representation of three principal 
stress directions in the geographis reference frame, . Once is known the stress tensor in the geographic 
reference frame is simply

sig_ned = A*sig_pri*A'

sig_ned = 3×3
    7.6407   -2.2158         0
   -2.2158    6.8593         0
         0         0    4.0025

Note that the third column and row only have a diagonal entry, that is because one of the principal stresses 
is vertical. Now we can plot the the orientation of the fault together with its normal and associated strike unit 
vectors,  (red) and  (blue), and the three principal stress directions (green).

plot_stress_orientation(E_sig,E_xyz)
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Note that in this plot we are using a third refeerence frame, the standeard XYZ frame used in all Matlab 
plotting routines, therefore you cannot directly compare the representation of the vectors we computed in the 
geographic reference frame!

Find traction of the fault
Once the stress tensor and the normal are known in the same reference frame, we obtain the traction, , 
and the normal and shear stresses on the fault as

normal stress: 

shear stress: 

Here the latter two expressions use the parallel and perpendicular projection tensors. In matlab the dyadic 
product can be obtained by multiplying a column vector by a row vector, hence the transposes on the second 
normal vector (n_ned) in the formulas below.

tn = sig_ned*n_ned

tn = 3×1
    2.6421
   -1.8293
   -3.7611

% parallel and perpendicular components via projection matrices
tn_par = (n_ned*n_ned')*tn
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tn_par = 3×1
    1.3713
   -0.7917
   -4.3505

tn_per = (eye(3)-n_ned*n_ned')*tn

tn_per = 3×1
    1.2708
   -1.0376
    0.5894

sig_n = n_ned'*tn

sig_n = 4.6297

tau   = m_ned'*tn

tau = 0.2632

plot_traction(tn,tn_par,tn_per,E_xyz)

Here the traction is shown in black and its parallel and perpendicular projections are shown as dashed black 
lines. 

Change of basis tensor
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function [A] = change_basis_tensor(Ep)
% author: Marc Hesse
% date: Sep 25, 2023
% Description: Computes the "change of basis" tensor A between two 
reference frames {e} and {e'},
% so that vectors transform as:
%              [v] = [A][v]' 
%              [v]'= [A]^T[v]
% and tensors transform as
%              [S] = [A][S][A]^T
%              [S]'= [A]^T[S][A]
%
% Input:
% Ep = [[ep1], [ep2], [ep3]] matrix containing the primed basis vectors 
%                        in the UNprimed frame
% Output: 
% A = change of basis matrix
E = eye(3);
e1 = E(:,1); e2 = E(:,2); e3 = E(:,3);

ep1 = Ep(:,1); ep2 = Ep(:,2); ep3 = Ep(:,3);

A = [e1'*ep1 e1'*ep2 e1'*ep3;...
     e2'*ep1 e2'*ep2 e2'*ep3;...
     e3'*ep1 e3'*ep2 e3'*ep3];
end                    

Plot fault plane normal and strike                
function [fault] = plot_fault(n,m,E_xyz)

% Input:
% n = fault normal (unit)
% m = strike vector (unit)

A = change_basis_tensor(E_xyz);

n_xyz = A*n; m_xyz = A*m;

% Dip vector
d_xyz = cross(n_xyz,m_xyz);

% Corners of fault outline
corner1 = 2*(d_xyz+m_xyz);
corner2 = 2*(d_xyz-m_xyz);
corner3 =  2*(-d_xyz-m_xyz);
corner4 =  2*(-d_xyz+m_xyz);

% Outline of fault plane
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fault.x = [corner1(1);corner2(1);corner3(1);corner4(1);corner1(1)];
fault.y = [corner1(2);corner2(2);corner3(2);corner4(2);corner1(2)];
fault.z = [corner1(3);corner2(3);corner3(3);corner4(3);corner1(3)];

% Plotting
plot3([0 n_xyz(1)],[0 n_xyz(2)],[0 n_xyz(3)],'r','linewidth',2), hold on
plot3([0 m_xyz(1)],[0 m_xyz(2)],[0 m_xyz(3)],'b','linewidth',2)
patch(fault.x,fault.y,fault.z,'b'), alpha(0.3)
grid on
xlabel 'south',
ylabel 'east'
zlabel 'elevation'
legend('n','m','fault')
axis equal

end

Plot stress orientation
function [] = plot_stress_orientation(E_sig,E_xyz)
% Change basis to XYZ
A = change_basis_tensor(E_xyz);
e1 = A*E_sig(:,1); e2 = A*E_sig(:,2); e3 = A*E_sig(:,3);

s1 = .75;
s2 = .5;
s3 = .25;
quiver3(e1(1),e1(2),e1(3),-s1*e1(1),-s1*e1(2),-
s1*e1(3),'linewidth',2,'color','g');
quiver3(-e1(1),-e1(2),-
e1(3),s1*e1(1),s1*e1(2),s1*e1(3),'linewidth',2,'color','g')

quiver3(e2(1),e2(2),e1(3),-s2*e2(1),-s2*e2(2),-
s2*e2(3),'linewidth',2,'color','g');
quiver3(-e2(1),-e2(2),-
e2(3),s2*e2(1),s2*e2(2),s2*e2(3),'linewidth',2,'color','g');

quiver3(e3(1),e3(2),e3(3),-s3*e3(1),-s3*e3(2),-
s3*e3(3),'linewidth',2,'color','g');
quiver3(-e3(1),-e3(2),-
e3(3),s3*e3(1),s3*e3(2),s3*e3(3),'linewidth',2,'color','g')

end

Plot the traction and its components
function [] = plot_traction(tn,tn_par,tn_per,E_xyz)
% Change basis to XYZ
A = change_basis_tensor(E_xyz);
tn     = A*tn;

9



tn_par = A*tn_par;
tn_per = A*tn_per;
scale = .3;
plot3(scale*[0 tn(1)],scale*[0 tn(2)],scale*[0 tn(3)],'k','linewidth',2)
plot3(scale*[0 tn_par(1)],scale*[0 tn_par(2)],scale*[0 
tn_par(3)],'k--','linewidth',2)
plot3(scale*[0 tn_per(1)],scale*[0 tn_per(2)],scale*[0 
tn_per(3)],'k--','linewidth',2)
end
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