
Highlands Aquifer with precipitation and polar recharge
The high heat flow on early Mars may have lead to basal melting of the ice caps. This has been estimated
to introduce > 10 km /yr into the Martian Highlands aquifer. Clifford and Parker (2001) modeled this as an
inflow through the boundary condtion.

Assuming (for now) a steady linear confined aquifer we have the following model equations:

PDE:  on 

BC's:  ⟹  and 

Dimensionless equations
Choosing the same dimesionless paramters as in the case without polar recharge

 and 

we have the dimensionless problem

PDE:  on 

BC's:  and .

which has one dimensionless parameter . The analytic solution is obtained by integrating twice
and given by

 and .

This family of solutions for differen values of Π is shown in the figure.

clear
q_ana = @(x,Pi) x + Pi;
h_ana = @(x,Pi) .5*(1-x.^2)+Pi*(1-x);
 
x_ana = linspace(0,1,1e2);
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subplot 121
plot(x_ana,h_ana(x_ana,0)), hold on
plot(x_ana,h_ana(x_ana,0.1))
plot(x_ana,h_ana(x_ana,0.2))
plot(x_ana,h_ana(x_ana,0.3))
plot(x_ana,h_ana(x_ana,0.4))
plot(x_ana,h_ana(x_ana,0.5))
xlabel 'x'' ', ylabel 'h'' '
legend('\Pi = 0.0','\Pi = 0.1','\Pi = 0.2','\Pi = 0.3','\Pi = 0.4','\Pi = 0.5')
pbaspect([1 .8 1])
 
subplot 122
plot(x_ana,q_ana(x_ana,0)), hold on
plot(x_ana,q_ana(x_ana,0.1))
plot(x_ana,q_ana(x_ana,0.2))
plot(x_ana,q_ana(x_ana,0.3))
plot(x_ana,q_ana(x_ana,0.4))
plot(x_ana,q_ana(x_ana,0.5))
xlabel 'x'' ', ylabel 'q'' '
legend('\Pi = 0.0','\Pi = 0.1','\Pi = 0.2','\Pi = 0.3','\Pi = 0.4','\Pi = 0.5','location','northwest')
pbaspect([1 .8 1])

Numerical solution
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Here we apply the flux  on the left hand boundary of the domain. Similar to the Dirichlet BC we specify the
location and flux of the Neumann BC with the vectors Grid.dof_neu and Grid.qb, respectively.

Note, that fn, the r.h.s. vector arising from the Neumann BC, must be added to fs in the input
to solve_lbvp.m.

Pi = 0.2;
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 30;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
L = -D*G; fs = ones(Grid.Nx,1);
 
BC.dof_dir = Grid.dof_xmax;
BC.dof_f_dir = Grid.dof_f_xmax;
BC.g = h_ana(Grid.xc(Grid.dof_xmax),Pi);
 
BC.dof_neu = Grid.dof_xmin;
BC.dof_f_neu = Grid.dof_f_xmin;
BC.qb = Pi;
[B,N,fn] = build_bnd(BC,Grid,I);
 
h = solve_lbvp(L,fs+fn,B,BC.g,N);
q = comp_flux(D,1,G,h,fs,Grid,BC);
 
figure
subplot 121
plot(x_ana,h_ana(x_ana,Pi)), hold on
plot(Grid.xc,h,'o')
xlabel 'x'' ', ylabel 'h'' '
legend('analytical','numerical')
pbaspect([1 .8 1])
 
subplot 122
plot(x_ana,q_ana(x_ana,Pi)), hold on
plot(Grid.xf,q,'o')
xlabel 'x'' ', ylabel 'q'' '
legend('analytical','numerical','location','northwest')
pbaspect([1 .8 1])

3



 

Discrete conservation
Our equations are based on the balance of fluid mass and hence any convergent (=functioning) numerical
solution should satisfy water balance in the limit of very fine resolution. By discrete conservation we mean
the property of a numerical scheme to satify the conservation exactly even on an arbitrarily coarse grid!
We can demonstrate this with the problem at hand. The outflow of groundwater into the northern ocean must
exactly balance the input due to rain and polar recharge.

flux into ocean = flux due to polar recharge + precipitation added

In the analytic solution:

Flux due to polar recharge: 

Water added by precipitation: 

Flow rate of water into the ocean in: 

Pi = 0.2;
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 5;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
L = -D*G; fs = ones(Grid.Nx,1);
 

4



BC.dof_dir = Grid.dof_xmax;
BC.dof_f_dir = Grid.dof_f_xmax;
BC.g = h_ana(Grid.xc(Grid.dof_xmax),Pi);
 
BC.dof_neu = Grid.dof_xmin;
BC.dof_f_neu = Grid.dof_f_xmin;
BC.qb = Pi;
[B,N,fn] = build_bnd(BC,Grid,I);
 
h = solve_lbvp(L,fs+fn,B,BC.g,N);
q = comp_flux(D,1,G,h,fs,Grid,BC);
 
q_o = q(Grid.dof_f_xmax)

q_o = 1.2000

1+Pi

ans = 1.2000

Even on a Grid with only 5 grid points the flux into the ocean is exactly !
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