
Boundary Conditions: Dirichlet BC

clear, close all, clc
set_defaults()

Dimensional problem
Initially we neglect the spherical cap geometry and simply assume a linear domain (for now!). A steady
confined groundwater aquifer across the entire southern highlands leads following governing equations

 for ,

where b is the thickness of the aquifer and is the precipitation. The boundary conditions are given by:

1.
 - due to the symmetry at the south pole

2. - ocean level at dichotomy

The analytical solution is given by

Assume the following problem paramters:

yr2s = 60^2*24*365.25; % second per year
rho = 1e3; % [kg/m^3] desity of water
grav = 3.711; % [m/s^2] grav. acceleration on Mars
k = 1e-11; % [m^2] permeability (Hanna & Phillips 2005)
mu = 1e-3; % [Pa s] water viscosity
b = 5e3;
precip = 0.13; % [mm/yr] equatorial precipitation (Andrews-Hanna 2010)
theta_bnd = acos(1/3); % [rad] co-lattitude of dichotomy bnd
R = 3389508; % [m] radius of mars
ho = -500; % [m] sealevel (for now)

Derived quantities

K = k*rho*grav/mu % [m/s] hydraulic conductivity

K = 3.7110e-05

fp = precip/1e3/yr2s % [m/s] precipitation

fp = 4.1195e-12

l = R*(pi-theta_bnd) % [m] distance from south pole to dichotomy bnd

1

l = 6.4761e+06

xdim = linspace(0,l,1e2);
hdim = @(x) ho + fp*l^2/(2*b*K)*(1-(x/l).^2);

subplot 121
plot(xdim/1e3,hdim(xdim))
pbaspect([1 .8 1])
xlabel('x [km]')
ylabel('h [m]')
title('Dimensional solution')

Dimensionless problem
Introducing the following scales for the variables

 and

we have the following dimensionless governing equation

 for

with the boundary conditions

1.

2.

The dimensionless analytic solution is given by

.

Below we will be solving the dimensionless system.

hprime = @(xprime) .5*(1-xprime.^2);
xprime = linspace(0,1,1e2);

subplot 122
plot(xprime,hprime(xprime))
pbaspect([1 .8 1])
xlabel('x''')
ylabel('h''')
title('Dimensionless solution')

2

Imposing Dirichlet BC's by eliminating constraints

Building the system matrix L
Using discrete operators the partial differential equation can be discretized as follows

L*u = fs

where L = -D*G is the dicrete Laplacian operator, u is the unknown vector of temperatures and fs is the
right hand side vector. Today we will discuss how to discretize the boundary condtions.

Without boundary conditions the problem is ill-posed and does not have a solution. This is reflected in the
condition number of the discrete Laplacian operator, L.

Grid.xmin = 0; Grid.xmax =1; Grid.Nx = 20;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
L = -D*G;
condest(L)

ans = Inf

A matrix with infinite condition number has no inverse. This is because there is an infinite number of possible
solutions to the Laplace equation, only the boundary conditions (BC's) make the solution unique.

3

Dirichlect BC's as a linear system
Dirichlet BC's prescribe the solution on the boundary. In the discrete solution they prescribe the solution in
the cells neighboring the boundaries. This constraint can be formulated as a linear system,

B*u = g

where B is the constrain matrix, u is the vector of unknowns (temperature), and g is a right hand side
vector. The constrain matrix B is Nc by Nx, where Nc is the number of constraints, i.e., cells along Dirichlet
boundaries with prescibed temperatures. This means that Dirichlet BC's provide constraints that reduce the
overall number of unknown we need to solve for.

Therefore the boundary value problem is described by two linear systems

1) L*u = fs, arising from the PDE, where L is the Nx by Nx system matrix

2) B*u = g, arising from the BC's, where B is the Nc by Nx constraint matrix

Neither L nor B is invertible, both allow infinite solutions. To find the unique solution to the boundary value
problem, the constraints in B must be eliminated from the system matrix L.

⇒we need to understand how to eliminate constraints

Building the constraint matrix
Suppose we have the following two Nc by 1 column vectors:

1. dof_dir: contains the degrees of fredom (dofs), i.e., cell numbers, of all cells along the Dirichlet
boundary.

2. g: contains the prescribed values the unknown is set to along the Dirichlet boundary.

The constraint matrix, B, needs to set the unknown in dof_dir to g. The matrix B therefore comprises the
rows of the Nx by Nx identity matrix, I, that correspond to dof_dir. Therefore B can be built as follows

dof_dir = [Grid.dof_xmax];
B = I(dof_dir,:);
size(B)

ans = 1×2
 1 20

clf
spy(B), title 'B'

4

The resulting constraint matrix has one row for every cell that is set to a prescribed value by the Dirichlet
BC's. In the 1D case with Dirichlet BC's at one ends Nc = 1 and B only has 1 rows. This simple construction
will remain the same, even in higher dimensions.

Homogeneous constraints
Initially, we consider a problem with homogeneous constraints, i.e., . The discrete problem is then
given by

PDE: L*u = fs

BC's: B*u = 0

Reduced linear system
Given that the constraints in B reduce the number of unknown we expect to solve a smaller or reduced linear
system of size (Nx-Nc) by (Nx-Nc)

Lr*ur = fsr.

Here the variables are:

1. ur is the (Nx-Nc) by 1 reduced vector of unknows.
2. fsr is the (Nx-Nc) by 1 reduced r.h.s. vector.
3. Lr is the (Nx-Nc) by (Nx-Nc) reduced system matrix.

5

Projection matrix
What is the relation between u and ur, fs and fsr, and L and Lr? Two vectors of different length are
related by a rectangular matrix

u = N*ur and fs = N*fsr

where N is a Nx by (Nx-Nc) matrix. Here N is any basis for the nullspace of the constraint matrix B. The
nullspace of B is simply the set of all solutions that satisfy B*u = 0, i.e., all the possible solutions that
satisfy the homogeneous boundary conditions. If we search for solutions to L*u=fs in the nullspace
of B, then the BC's are automatically satisfied. In Matlab the nullspace of a matrix can be found with the
function null() or spnull() for sparse matrices.

N = spnull(B);
size(N)

ans = 1×2
 20 19

spy(N), title 'N'

Assume that N is orthonormal, i.e., that the dot product between all columns is unity. Then it follows that

1. N'*N = Ir, where Ir is the (Nx-Nc) by (Nx-Nc) identity matrix in the reduced space.
2. N*N' = Ic, where Ic is the Nx by Nx "identity matrix" with Nc zeros on the diagonal.

6

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-6-column-space-and-nullspace/
https://www.mathworks.com/help/matlab/ref/null.html
https://www.mathworks.com/matlabcentral/fileexchange/27550-sparse-null-space-and-orthogonal?focused=5152745&tab=function

Ir = N'*N;
size(Ir)

ans = 1×2
 19 19

spy(Ir), title 'Ir'

non_0_entries_Ir = full(sum(diag(Ir)))

non_0_entries_Ir = 19

Ic = N*N';
size(Ic)

ans = 1×2
 20 20

spy(Ic), title 'Ic'

7

non_0_entries_Ic = full(sum(diag(Ic)))

non_0_entries_Ic = 19

In this case, we have the following relationship, N'*u = N'*N*ur = Ir*ur = ur, so that N and N' allow
us to go forth and back between u and ur:

u = N*ur

ur = N'*u

Of course, the same relationship exists between fsr and fs, fsr = N'*fs.

The matrix N' projects the vector of unknowns into the nullspace of B. Note that a proper projection matrix is
square, it would simply zero out the entries that are not in the nullspace. Instead, our N' matrix eliminates
these entries, but the idea is the same.

Reduced system matrix
Given the properties of N, defined above, the expression for the reduced system matrix is derived as follows

L*u = fs

N'*L*u = N'*fs

8

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-16-projection-matrices-and-least-squares/

N'*L*Ic*u = N'*fs

N'*L*(N*N')*u = N'*fs

(N'*L*N)*(N'*u) = N'*fs

Lr*ur = fsr

where

1. Lr = N'*L*N
2. ur = N'*u
3. fsr = N'*fs

Lr = N'*L*N;
size(Lr)

ans = 1×2
 19 19

spy(Lr), title 'Lr'

The reduced system matrix Lr is not singular anymore, because the constraints have been incorporated. This
can be checked by estimating the condition number

condest(Lr)

9

ans = 760

Solving problem with homogeneous boundary conditions
Here we solve the dimensionless version of the southern highlands aquifer problem given above.

Solving a steady problem with homogeneous boundary conditions therefore requires 3 steps:

1. Compute N and obtain Lr and fsr.
2. Solve reduced problem: ur = Lr\fsr.
3. Obtain full solution: u = N*ur.

fs = ones(Grid.Nx,1);
fsr = N'*fs;
ur = Lr\fsr;
u_hom = N*ur;
uu = u_hom +hprime(Grid.xc(Grid.Nx)); % shift to account for BC

clf
plot(xprime,hprime(xprime)), hold on
plot(Grid.xc,u_hom,'o','markerfacecolor','w','markersize',8)
plot(Grid.xc,uu,'g.','markersize',16)

xlabel('x'' [-]')
ylabel('h'' [-]')
title('Homogeneous Dir. BC')
legend('analytic','numeric','numeric shifted')

10

Note, the boundary condition is set at the center of the first cell, which makes the solution look bad (first order
error).

If we shift the solution upward by the appropriate amount the fit to the analytic solution is quite good.

Heterogeneous constraints
We are interested in solving for the geotherm which requires heterogeneous, i.e., non-zero, BC's. In this case

 B*u = g,

where g = [] is a vector containing the two boundary conditions.

To obtain the solution of a problem with heterogeneous boundary conditions, we split the solution into a
homogeneous and a particular solution as follows

u = u0 + up,

where the homogeneous solution solves B*u0 = 0 as before and the particular solution solves B*up = g.
The solution then proceeds in three steps

1. Find a particular solution that satisfies B*up = g.
2. Find the associated homogeneous solution, u0.
3. Find total solution u = u0 + up.

11

Find a particular solution
Note there are many possible particular solutions, here we just find the simplest one. Also not that up does
not need to satisfy L*up = fs it only needs to satisfy the boundary conditions B*up = g. Since the system
is not square and Nx > Nc and B has only Nc entries we can again project into a reduced space of size Nc.

It is natural to use B as projection matrix, so that upr = B*up and up = B'*upr. We derive the reduced
system as follows

B*up = g

B*(B'*upr) = g

(B*B')*upr = g

Br*upr = g

where the reduced constraint matrix is Br = B*B' is Nc by Nc. For the simple constraints we use
here Br is simply the Nc by Nc identity matrix, so that upr = g. However, our definition is also valid for
more general constraints so we'll stick with that. Once upr is known the full particular solution can be
recovered, up = B'*upr.

g = hprime(Grid.xc(Grid.Nx));
Br = B*B';
size(Br)

ans = 1×2
 1 1

upr = Br\g;
up = B'*upr;

Find associated homogeneous solution
Once up is known we find the associated homogeneous solution, h0, as follows

L*u = fs

L*(u0+up) = fs

L*u0 = fs - L*up

L*u0 = fs + fd

where fd = -L*up is a new source term due to heterogeneous Dirichlet BC's. But the problem can be
solved with the nullspace projection for homogeneous problems as above. Combining the r.h.s. f = fs + fd we
solve as follows

N = I; N(:,dof_dir)=[]; % simple/fast way to generate N without spnull()
fd = -L*up;
f = fs + fd;
% Reduced system
fr = N'*f;
Lr = N'*L*N;

12

u0r = Lr\fr;
u0 = N*u0r;

% Total solution
u_het = u0 + up;
figure
plot(xprime,hprime(xprime)), hold on
plot(Grid.xc,u_het,'o','markerfacecolor','w','markersize',8)

xlabel('x'' [-]')
ylabel('h'' [-]')
title('Heterogeneous Dir. BC')
legend('analytic','numeric')

Auxillary functions
This implementation of spnull() is taken from Bruno Luong, thanks man!

function Z = spnull(S, varargin)
% Z = SPNULL(S)
% returns a sparse orthonormal basis for the null space of S, that is,
% S*Z has negligible elements, and Z'*Z = I
%
% If S is sparse, Z is obtained from the QR decomposition.
% Otherwise, Z is obtained from the SVD decomposition
%

13

https://www.mathworks.com/matlabcentral/profile/authors/390839-bruno-luong

% Bruno Luong <brunoluong@yahoo.com>
% History
% 10-May-2010: original version
%
% See also SPORTH, NULL, QR, SVD, ORTH, RANK

if issparse(S)
 [m n] = size(S);
 try
 [Q R E] = qr(S.'); %#ok %full QR
 if m > 1
 s = diag(R);
 elseif m == 1
 s = R(1);
 else
 s = 0;
 end
 s = abs(s);
 tol = norm(S,'fro') * eps(class(S));
 r = sum(s > tol);
 Z = Q(:,r+1:n);
 catch %#ok
 % sparse QR is not available on old Matlab versions
 err = lasterror(); %#ok
 if strcmp(err.identifier, 'MATLAB:maxlhs')
 Z = null(full(S), varargin{:});
 else
 rethrow(err);
 end
 end
else % Full matrix
 Z = null(S, varargin{:});
end

end

set_defaults()

function [] = set_defaults()
 set(0, ...
 'defaultaxesfontsize', 18, ...
 'defaultaxeslinewidth', 2.0, ...
 'defaultlinelinewidth', 2.0, ...
 'defaultpatchlinewidth', 2.0,...
 'DefaultLineMarkerSize', 12.0);
end

14

