
Estimate drainage time for southern highlands aquifer

clc, clear
set_demo_defaults
yr2s = 60^2*24*365.25; % seconds per year
R_mars = 3389508; % [m] Mars' mean radius 
g_mars = 3.711;   % [m/s^2] grav. acceleration on Mars
rho = 1e3;      % [kg/m^3] desity of water 
mu = 1e-3;      % [Pa s] water viscosity

Use numerical solution to estimte a drainage time for the southern highlands aquifer

Guess-timate the physical properties

Fit porosity exponent, m

Here we fit the exponent for the porosity power-law, , to the exponential solution, ,

used by Clifford and Parker (2001). Here d is the depth beneath the surface and , where  is

the maximum depth of the aquifer. Hence our model assumed thate ϕ becomes zero as , unlike

the exponential model. As such the power-law model has three free parameters the coefficient , the

exponet m and finite aquifer depth . We choose  adetermine the remaining paramters by matching

the porosity of the exponetial model at  and  and obtain

 and .

The exonent m is independent of the surface porosity , so that we cavary  without changing m. For and

aquifer of  km a fitting the porosity at a depth of  we obtain . The resulting curves for

the porosity are shown the figure. Perhaps a better choice would be to fit  and m to match  and the total
pore volume.

dmax = 10e3; % [km] max. aquifer depth
d0 = 2.8375e3;  % decay depth
 
phi_clifford = @(d,phi_s,d0) phi_s*exp(-d/d0);
phi_s_min = 0.3;
phi_s_max = 0.5;
 
 
m_best = dmax/(2*d0*log(2))

m_best = 2.5422

phi0_best = @(phi_s,m) phi_s/(dmax^m);  
 
phi = @(z,phi0,m_exp) phi0*z.^m_exp;
 
d = linspace(0,10e3,1e2)';
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z = dmax-d;
figure('position',[10 10 600 600])
subplot 121
plot(phi_clifford(d,phi_s_min,d0),d/1e3,'r--'), hold on
plot(phi(z,phi0_best(phi_s_min,m_best),m_best),d/1e3,'r-')
plot(phi_clifford(d,phi_s_max,d0),d/1e3,'b--')
plot(phi(z,phi0_best(phi_s_max,m_best),m_best),d/1e3,'b-')
set(gca,'ydir','reverse')
xlabel '\phi [-]', ylabel 'd [km]'
legend('expoential','power-law','location','southeast')

Fit the hydraulic conductivity exponent, n

The power-law for the permeability decay with depth is fit to the Manning and Ingebrisen (1999), which is a
power-law decay with depth. As such we simply have
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where  is the reference permeability of Manning and  Ingebritsen at 1 km depth.

k0_MI = 10^(-12.65); % [m^2] ref. permeability at 1km depth Manning and Ingebritsen (1999)
alpha = 3.2;
k_MI = @(d) k0_MI*d.^(-alpha);
 
k0 = @(n) k0_MI/(dmax-1e3)^n;
k = @(z,n) k0(n)*z.^n;
 
subplot 122
plot(k_MI(d/1e3),d/1e3), hold on
plot(k(z,2*m_best),d/1e3)
plot(k(z,3*m_best),d/1e3)
plot(k(z,4*m_best),d/1e3)
plot(k0_MI,1,'ko','markerfacecolor','w','markersize',6)
set(gca,'ydir','reverse')
xlabel 'k [m^2]', 
xlim([0 1e-12])
legend('Mannig and Ingebritsen','n/m=2','n/m=3','n/m=4','location','southeast')
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The resulting exponent for the permeability decline is rather large

m_best*2

ans = 5.0844

m_best*4

ans = 10.1688

Based on the permeabilith we can define the hydraulic conductivity 

 

and hydraulic diffusivity
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K0 = @(n) k0(n)*rho*g_mars/mu;
D_hyd = @(phi_s,m,n) K0(n)*(m+1)/(phi0_best(phi_s,m)*(n+1));

Estimating drainage timescale for the Martial highlands

theta_bnd = pi-acos(1/3);   % [rad] co-lattitude of the dichotomy boundary
h0 = dmax;                  % [m] initial height of the water table 

To estimate the drainage timescale for the Martial highlands we have the following equations of the spherical
shell

PDE:  on 

BC's:  and 

IC: 

Parameter ranges

Using the fits above the values of  and  in the governing equation, take extreme values

phi0_min = phi0_best(0.3,m_best)

phi0_min = 2.0340e-11

phi0_max = phi0_best(0.5,m_best)

phi0_max = 3.3900e-11

the values for  are even more extreme

K0_max = K0(2*m_best)

K0_max = 6.5251e-27

K0_min = K0(4*m_best)

K0_min = 5.1249e-47

and the resulting hydraulic diffusivity is very pooly scaled and can range over more than 10 orders of
magnitude

D_hyd_max=D_hyd(0.3,m_best,2*m_best)
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D_hyd_max = 1.8677e-16

D_hyd_min=D_hyd(0.5,m_best,4*m_best)

D_hyd_min = 4.7947e-37

Dimensionless governing equation
As such it is useful to non-dimensionalize the governing equation to improve the scaling. Here we introduce
the scales

,  and  where we choose the characteristic time  and have the dimensionless

governing equations

PDE:  on 

BC's:  and 

IC: 

The characteristic timescale, , indicates the time it takes for the change in head to propagate from the
dichotomy to the south pole.  This propagation timescale appears to be 40 to 80 million years. The drainage
timescale is orders-of magnitude longer than this propagation timescale. It is currently unclear (to me) how to
properly define the drainage timescale. 

tc = @(phi_s,m,n_mult)  phi0_best(phi_s,m)*R_mars^2*(n_mult*m+1)/(K0(n_mult*m)*h0^(n_mult*m-m+1));
 
tc_min = tc(0.3,m_best,2)/yr2s

tc_min = 4.6813e+07

tc_max = tc(0.5,m_best,4)/yr2s

tc_max = 8.3822e+07

Numerical solution
Here we use the values estimated above to compute the timescale for the drainage of the Martian highland
aquifer. These are fresh of the press estimates that should be taken with a grain of salt, but it appears that
the time to drain 90% of the water is on the order of the age of the solar system! Taken a face value, this
would imply that the deep Martian hydrosphere is still adjusting to changes in Mars climate 3 billion years
ago. Taking this yet another step further, this means that deep Martian groundwater may have persisted over
its entire life time, providing a prodected deep habitat. Of course, this is a good place to remember that we
have made many simplifying assumptions :-).

It is encouraging though that the decline follows a power-law and the exponent seems to be predicted by the
linear thery of Zheng et al. (2013)! This suggests that the solution on the spherical shell is still self-similar
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and the theory can be extented. Theoretical results would allow to bracket the decay rates for large range of
possible decay rates of porosity and permeability.

n_mult = 3;
m_exp = m_best;
n_exp = n_mult*m_exp;
% Timestepping
tmax = 5e3;
Nt = 2*tmax;
dt = tmax/Nt;
 
%% Grid and ops
Grid.xmin = 0; Grid.xmax = theta_bnd; Grid.Nx = 300;
Grid.geom = 'spherical_shell'; Grid.R_shell = 1;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
M = Grid.dx/2*abs(G);   % mean operator
fs = zeros(Grid.Nx,1);
 
%% Jacobian for transient solution
% Function in accumulation term
s  = @(u) u.^m_exp;
ds = @(u) m_exp*u.^(m_exp-1);
S  = @(u) spdiags(s(u),0,Grid.Nx,Grid.Nx);
dS = @(u) spdiags(ds(u),0,Grid.Nx,Grid.Nx);
 
% Function in flux term
f  = @(u) u.^(n_exp+1)/(n_exp+1);
df = @(u) u.^n_exp;
 
F  = @(u) spdiags(M*f(u),0,Grid.Nx+1,Grid.Nx+1);
dF = @(u) spdiags(df(u),0,Grid.Nx,Grid.Nx);
 
% Other 'function matrices'
U  = @(u,uold) spdiags(u-uold,0,Grid.Nx,Grid.Nx);
GU = @(u)      spdiags(G*u,0,Grid.Nx+1,Grid.Nx+1);
 
% Residual and Jacobian
res = @(u,uold) S(u)*(u-uold) - dt*D*(F(u)*G*u) - dt*fs;
Jac = @(u,uold) dS(u)*U(u,uold) + S(u) - dt*D*(GU(u)*M*dF(u) + F(u)*G);
 
%% BC's
BC.dof_dir   = Grid.dof_xmax;
BC.dof_f_dir = Grid.dof_f_xmax;
BC.g         = 0;
 
BC.dof_neu   = [];
BC.dof_f_neu = [];
BC.qb        = [];
[B,N,fn] = build_bnd(BC,Grid,I);
 
%% Initial condition
hD = ones(Grid.Nx,1);
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hD(Grid.dof_xmax) = 0;
M = zeros(Nt+1,1); M(1) = sum(hD*Grid.dx);
 
%% Time integration
kmax = 10; 
tol = 1e-6;
 
fprintf('Computing transient solution:\n')

Computing transient solution:

for n = 1:Nt
    hDold = hD;
    nres = norm(res(hD,hDold)); ndhD = 1; k = 0;
    while (nres > tol || ndhD > tol) && k < kmax
        dhD = solve_lbvp(Jac(hD,hDold),-res(hD,hDold),B,BC.g,N);
        hD = hD + dhD;
        nres = norm(N'*res(hD,hDold)); ndhD = norm(N'*dhD);
        k = k+1;
%         fprintf('it = %d: nres = %3.2e  ndhD = %3.2e\n',k,nres,ndhD)
        if k == 1; ndhD = 0; end % to allow exit on first iteration
    end
    if k <= kmax; 
%         fprintf('Newton converged after %d iterations\n\n',k)
    else
        error('Newton did not converged after %d iterations\n\n',k)
    end
    tD = n*dt;
    M(n) = sum(hD.^(m_exp+1)/(m_exp+1).*sin(Grid.xc)*Grid.dx);
end
fprintf('Transient solution computed successfully:\n')

Transient solution computed successfully:

 
tc_here = tc(0.3,m_exp,n_mult);
M0 = sum(ones(Grid.Nx,1).^(m_exp+1)/(m_exp+1).*sin(Grid.xc)*Grid.dx);
M_theory = @(t) (1./t).^((m_exp+1)/(n_exp-m_exp+1));
 
figure('position',[10 10 1000 400])
subplot 121
plot(rad2deg(Grid.xc),hD,'-'),
xlabel '\theta', ylabel 'h/h_0'
xlim([0 120])
ylim([0 1])
pbaspect([1 .8 1])
 
subplot 122
time_vec = [1:Nt+1]*dt;
loglog(time_vec*tc_here/yr2s/1e9,M/M0), hold on
loglog(time_vec*tc_here/yr2s/1e9,M_theory(time_vec))
pbaspect([1 .8 1])
xlim([1e-2,1e3])
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ylim([1e-3 1e0])
% legend('numerical','theory')
xlabel 'time [Gyrs]'
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