
Crashcourse Matlab - Part II: Inbuilt Matlab functions

Matlab provides a large number od inbuild functions that help you do things. Here we just highlight some
of the very commonly used ones. The best way to learn about functions is the Matlab documentation. The
hyperlinks below will take to the documentation of the functions we discuss.

Basics

In general, a function has an input and an output: out = function(in);

For example you can determine the length of the vector as follows

a = [-10:5:20];
len_of_a = length(a)

len_of_a = 7

Here length() is the function, the vector "a" the input and the scalar "len_of_a" the out put. Functions can
have multiple inputs.

A = rand(6,8)

A = 6×8
 0.8147 0.2785 0.9572 0.7922 0.6787 0.7060 0.6948 0.7655
 0.9058 0.5469 0.4854 0.9595 0.7577 0.0318 0.3171 0.7952
 0.1270 0.9575 0.8003 0.6557 0.7431 0.2769 0.9502 0.1869
 0.9134 0.9649 0.1419 0.0357 0.3922 0.0462 0.0344 0.4898
 0.6324 0.1576 0.4218 0.8491 0.6555 0.0971 0.4387 0.4456
 0.0975 0.9706 0.9157 0.9340 0.1712 0.8235 0.3816 0.6463

Here the function rand() produces a random matrix with 6 rows and 9 columns. Functions can also have
multiple outputs.

[r, c] = size(A)

r = 6
c = 8

Here the function size() tels you that the matrix A has 6 rows and 8 columns. There are also functions that
don't require an input

today = date()

today =

'16-Jan-2021'

Here the function date() returns a string, i.e., a number of letters and numbers, giving todays date.

In general, inbuilt matlab functions can have variable numbers of inputs and outputs.

1

https://www.mathworks.com/help/matlab/index.html
https://www.mathworks.com/help/matlab/ref/length.html
https://www.mathworks.com/help/matlab/ref/rand.html
https://www.mathworks.com/help/matlab/ref/size.html
https://www.mathworks.com/help/matlab/ref/date.html

Learning more about functions

• Your power in Matlab correlates directly with your knowledge of functions! So try to explore the
documentation. At the bottom of every documentation page you are given a list of related functions,
browsing those is a good way to explore potentially useful functions.

• The documentation takes some getting used to, but I expect that you look up the dcumentation by
yourself. In class, I will only highlight certain features of functions we are using that are important in
the context of the class.

If you know the function name:

Typically you can just google "Matlab Name" and you will get the documentation page.

If you know what you want to do:

Try to google something like "Matlab my activity". For example if you you want to integrate a function but
don't know how. Google "Matlab numerical integration". The first hit I get is to this to the documentation page
of the Matlab function integral, which not surprisingly intrgrates a function.

Basic Mathematical functions

Matlab has a function for everything you need. Typically the names don't need much explanation. For
example all trigonometric and transcendental functions are availabe. For a full list see here and scroll down
to Mathematics. A few simple examples are

sin(2*pi)

ans = -2.4493e-16

e = exp(1) % Euler's number

e = 2.7183

log(e)

ans = 1

sqrt(2)

ans = 1.4142

2^(1/2)

ans = 1.4142

Note that you can use "pi" to refer to the trigonometric constant in Matlab. Note, that log() is the
natural logarithm in Matlab, often otherwise denoted ln(). After getting familiar with Matlab you can guess the
function name in 80% of the cases.

2

https://www.mathworks.com/help/matlab/ref/integral.html
https://www.mathworks.com/help/matlab/functionlist.html

Basic vector functions

Matlab is particularly good with functions for vectors

a = round((rand(5,1)-.5)*10)

a = 5×1
 2
 3
 -2
 2
 2

length(a) % Gives the length of the vector

ans = 5

max(a) % Maximum element of the vector

ans = 3

min(a) % Minimum element of the vector

ans = -2

abs(a)' % takes absolute value of all elements of the vector

ans = 1×5
 2 3 2 2 2

norm(a) % magnitude of the vector

ans = 5

mean(a) % Computes the mean of the vector elements

ans = 1.4000

std(a) % Computes the standard deviation of the vector elements

ans = 1.9494

sum(a) % Computes the sum of all vector elements, returns a scalar

ans = 7

cumsum(a)' % Cumulative sum of all vector elements, returns a vector

ans = 1×5
 2 5 3 5 7

Basic Matrix functions

3

Matlab is even better with matrix operations

A = round((rand(5)-.5)*10);
A = A*A' % SPD A with real integer entries

A = 5×5
 39 13 7 0 -8
 13 61 -3 -22 -22
 7 -3 47 -6 -7
 0 -22 -6 42 -10
 -8 -22 -7 -10 33

cond(A) % Condition number

ans = 13.8975

rank(A) % Rank of matrix

ans = 5

Ainv = inv(A) % computes inverse

Ainv = 5×5
 0.0296 -0.0104 -0.0065 -0.0072 -0.0033
 -0.0104 0.0513 0.0171 0.0406 0.0476
 -0.0065 0.0171 0.0289 0.0182 0.0215
 -0.0072 0.0406 0.0182 0.0589 0.0471
 -0.0033 0.0476 0.0215 0.0471 0.0800

[L,U] = lu(A) % LU factorization

L = 5×5
 1.0000 0 0 0 0
 0.3333 1.0000 0 0 0
 0.1795 -0.0941 1.0000 0 0
 0 -0.3882 -0.1784 1.0000 0
 -0.2051 -0.3412 -0.1632 -0.5879 1.0000
U = 5×5
 39.0000 13.0000 7.0000 0 -8.0000
 0 56.6667 -5.3333 -22.0000 -19.3333
 0 0 45.2416 -8.0706 -7.3837
 0 0 0 32.0191 -18.8231
 0 0 0 0 12.4923

[V,D] = eig(A) % Eigenvalue decomposition

V = 5×5
 -0.0935 0.8600 -0.0771 0.3883 -0.3080
 0.5011 -0.1558 -0.1718 -0.2088 -0.8071
 0.2389 -0.2534 0.6566 0.6594 -0.1131
 0.5246 -0.0782 -0.6195 0.4576 0.3543
 0.6387 0.4071 0.3868 -0.4018 0.3395
D = 5×5
 6.0768 0 0 0 0
 0 30.7957 0 0 0
 0 0 48.5008 0 0
 0 0 0 52.1741 0
 0 0 0 0 84.4525

4

null(A) % Basis of nullspace of A

ans =

 5×0 empty double matrix

[U,S,V] = svd(A) % Singular value decomposition of A

U = 5×5
 -0.3080 0.3883 -0.0771 0.8600 0.0935
 -0.8071 -0.2088 -0.1718 -0.1558 -0.5011
 -0.1131 0.6594 0.6566 -0.2534 -0.2389
 0.3543 0.4576 -0.6195 -0.0782 -0.5246
 0.3395 -0.4018 0.3868 0.4071 -0.6387
S = 5×5
 84.4525 0 0 0 0
 0 52.1741 0 0 0
 0 0 48.5008 0 0
 0 0 0 30.7957 0
 0 0 0 0 6.0768
V = 5×5
 -0.3080 0.3883 -0.0771 0.8600 0.0935
 -0.8071 -0.2088 -0.1718 -0.1558 -0.5011
 -0.1131 0.6594 0.6566 -0.2534 -0.2389
 0.3543 0.4576 -0.6195 -0.0782 -0.5246
 0.3395 -0.4018 0.3868 0.4071 -0.6387

[Q,R] = qr(A) % QR factorization

Q = 5×5
 -0.9185 0.3040 0.1888 0.1655 -0.0309
 -0.3062 -0.8312 0.0297 -0.1228 0.4466
 -0.1649 0.1423 -0.9537 -0.0506 0.2013
 0 0.3620 0.1896 -0.7988 0.4415
 0.1884 0.2558 0.1343 0.5630 0.7511
R = 5×5
 -42.4617 -34.2661 -14.5778 5.8406 21.4546
 0 -60.7687 7.3480 30.0791 19.6785
 0 0 -45.6672 11.6906 7.0474
 0 0 0 -36.1727 28.2977
 0 0 0 0 9.3825

Matlab's best feature is the backslash for direct solution of linear systems .

b = a % r.h.s. vector

b = 5×1
 2
 3
 -2
 2
 2

x = A\b

x = 5×1
 0.0200
 0.2753

5

 0.0599
 0.2831
 0.3475

x2 = Ainv*b

x2 = 5×1
 0.0200
 0.2753
 0.0599
 0.2831
 0.3475

Please NEVER solve a linear system by computing the inverse of . For large systems this is very slow,

very inaccurate and requires enormous memory. The latter is because is generally a full matrix, even
if only has a few entries. Instead the backslash uses Gaussian elimination to solve the linear system.

6

