
Numerical Jacobian approximation

clear, clc
set_demo_defaults

In some case it may not be feasible to derive the analytic expression for the Jacobian, or as we shall see it is
simply not worth to derive the Jacobina for a one time clculation. In those cases, the Jacobian matrix can be
approximated numerically with simple finite differences. This is also useful in testing if the analytic Jacobian
has been implemented correctly.

Sparsity pattern of the Jacobian

%% Grid and operators
Pi = 0.3;
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 10;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
fs = ones(Grid.Nx,1); % r.h.s
M = Grid.dx/2*abs(G); % mean operator

%% Residual and Jacobian for unconfined flow
H = @(h) spdiags(M*h,0,Grid.Nfx,Grid.Nfx); % diagonal matrix with hD ave on faces
dH = @(h) spdiags(G*h,0,Grid.Nfx,Grid.Nfx); % diagonal matrix with G*hD
res = @(h) D*(H(h)*G*h) + fs; % residual vector
Jac = @(h) D*(H(h)*G+dH(h)*M); % Jacobian matrix

then we need a test vector that should be non zero

hD_test = 1-Grid.xc.^2;
plot(Grid.xc,hD_test,'o')
xlabel 'x''', ylabel 'h'''
title 'Test vector'

1

It is useful to visualize the sparsity pattern of the Jacobian matrix, it is the same as that of the discrete
operators. In 1D this means it is tri-diagonal, like the discrete Laplacian L = -D*G.

Jac_ana = Jac(hD_test);
spy(Jac_ana)

2

Finite difference approximation of the Jacobian
For the residual , the entries in the Jacobian can be approximated with finite differences as

 for

In Matlab we can vectorize this partially by computing the derivatives of all 's with respect to a

particular at the same time. But we still have to loop over the N unkonwns. Note, this is the only code in
this class where we use a for-look to look over the unknowns!!! It is slow, but this does not matter because
we only use this in testing.

u = hD_test;
eps_jac = 1e-6

eps_jac = 1.0000e-06

Jac_num = spalloc(Grid.Nx,Grid.Nx,nnz(D*G)); % initialize the sparse Jacobian
u_perturb=u;
for i=1:Grid.Nx
 u_perturb(i)=u_perturb(i)+eps_jac;
 Jac_num(:,i)=(res(u_perturb)-res(u))/eps_jac;
 u_perturb(i)=u(i);
end

3

% Jac_num = comp_jacobian(res,hD_test,eps_jac)
Jac_num = full(Jac_num)

Jac_num = 10×10
 -99.7500 97.7501 0 0 0 0 0 0
 99.7500 -195.5001 93.7500 0 0 0 0 0
 0 97.7501 -187.5001 87.7501 0 0 0 0
 0 0 93.7500 -175.5001 79.7501 0 0 0
 0 0 0 87.7500 -159.5001 69.7500 0 0
 0 0 0 0 79.7501 -139.5001 57.7501 0
 0 0 0 0 0 69.7501 -115.5001 43.7501
 0 0 0 0 0 0 57.7500 -87.5001
 0 0 0 0 0 0 0 43.7500
 0 0 0 0 0 0 0 0

Jac_ana = full(Jac_ana)

Jac_ana = 10×10
 -99.7500 97.7500 0 0 0 0 0 0
 99.7500 -195.5000 93.7500 0 0 0 0 0
 0 97.7500 -187.5000 87.7500 0 0 0 0
 0 0 93.7500 -175.5000 79.7500 0 0 0
 0 0 0 87.7500 -159.5000 69.7500 0 0
 0 0 0 0 79.7500 -139.5000 57.7500 0
 0 0 0 0 0 69.7500 -115.5000 43.7500
 0 0 0 0 0 0 57.7500 -87.5000
 0 0 0 0 0 0 0 43.7500
 0 0 0 0 0 0 0 0

Jac_err = Jac_ana-Jac_num

Jac_err = 10×10

10-3 ×
 0.0500 -0.0500 0 0 0 0 0 0
 -0.0500 0.1000 -0.0500 0 0 0 0 0
 0 -0.0500 0.1000 -0.0500 0 0 0 0
 0 0 -0.0500 0.1000 -0.0500 0 0 0
 0 0 0 -0.0500 0.1000 -0.0500 0 0
 0 0 0 0 -0.0500 0.1000 -0.0500 0
 0 0 0 0 0 -0.0500 0.1000 -0.0500
 0 0 0 0 0 0 -0.0500 0.1000
 0 0 0 0 0 0 0 -0.0500
 0 0 0 0 0 0 0 0

This can be compartmentalized in a function comp_jacobian.m.

Convergence of FD approximation
We can use this function to test the convergence of the finite difference approximation of the Jacobian

N_eps = 10;
eps_vec = logspace(-10,-3,N_eps);
Jana = Jac(hD_test);
for i = 1:N_eps
 Jnum = comp_jacobian(res,u,eps_vec(i));
 Jerr(i) = norm(Jnum(:)-Jana(:));
end

4

figure
loglog(eps_vec,Jerr,'o')
xlabel '\epsilon'
ylabel 'error'

Again we see the increase of the error in the limit of small ϵ due to round-off errors. A reasonable magnitude

for the perturbation is beteen and .

 Solving unconfined aquifer problem with numerical Jacobian
For the unconfined aquifer problem the Newton-Raphson method converges in the same number of iteration
as the analytical Jacobian for . However, as the system of equation increases the Jacobian becomes
more expensive to compute, due to the for-loop.

%% Analytic solution
hD_ana = @(xD,Pi) sqrt(1+Pi^2-xD.^2);

%% Boundary conditions - for update!
BC.dof_dir = Grid.dof_xmax;
BC.dof_f_dir = Grid.dof_f_xmax;
BC.g = 0;
BC.dof_neu = [];
BC.dof_f_neu = [];
BC.qb = [];
[B,N,I] = build_bnd(BC,Grid,I);

5

%% Newton iteration
tol = 1e-9; % convergence tolerance
nmax = 10; % maximum number of iterations

% Initial guess
hD = ones(Grid.Nx,1);
hD(BC.dof_dir) = hD_ana(Grid.xc(BC.dof_dir),Pi); % satisfy Dir BC so dhD = 0 on bnd!

nres = norm(res(hD)); ndhD = 1; n = 0;
while (nres > tol || ndhD > tol) && n < nmax
% J = Jac(hD); % analytic Jacobian
 J = comp_jacobian(res,hD,1e-3); % numerical Jacobian
 dhD = solve_lbvp(J,-res(hD),B,BC.g,N);
 hD = hD + dhD;
 nres = norm(N'*res(hD)); ndhD = norm(N'*dhD);
 n = n+1;
 fprintf('it = %d: nres = %3.2e ndhD = %3.2e\n',n,nres,ndhD)
 if n == 1; ndhD = 0; end % to allow exit on first iteration
 nres_Newton(n) = nres; ndhD_Newton(n) = ndhD;
end

it = 1: nres = 7.31e+00 ndhD = 4.49e-01
it = 2: nres = 4.99e-01 ndhD = 8.38e-02
it = 3: nres = 2.55e-03 ndhD = 4.55e-03
it = 4: nres = 2.17e-06 ndhD = 2.00e-05
it = 5: nres = 1.80e-09 ndhD = 1.68e-08
it = 6: nres = 1.49e-12 ndhD = 1.38e-11

function [J] = comp_jacobian(r,u,eps)
n=length(u);
J = spalloc(n,n,3*n);
u_perturb=u;
for i=1:n
 u_perturb(i)=u_perturb(i)+eps;
 J(:,i)=(r(u_perturb)-r(u))/eps;
 u_perturb(i)=u(i);
end
end

6

