
Radial coordinates - Polar recharge

clear
set_demo_defaults;
R_mars = 3389508;    % [m] Mars' mean radius 
grav = 3.711;   % [m/s^2] grav. acceleration on Mars

To be able to account properly for the polar recharge discussed by Clifford (1993) we need to consider
cylindrical geometry of the aquifer near the pole. In linear geometry, considered so far, the polar basal
melting rates are meaningless because the width of the linear aquifer considered so far is arbitrary.

In the images of Mars south polar region below the radial geometry is nicely illustrated by the graticule, i.e.,
the grid formed by the lines of latitude and longitude.

Ice surface topography                      Bedrock topography

  

The southern polar region of Mars consists of an ice cap (black boundary) of layered ice deposits. It reaches
a thickness of more than 3.7 kilometres and is mostly water ice. Image data collected between 1997 and
2001 by the Mars Orbiter Laser Altimeter (MOLA) aboard NASA's Mars Global Surveyor orbiter.

Below we will impose the polar recharge at the average lattitude of the south polar cap of
approximately , which corresponds to a radial distance from the south pole of

theta_pole = deg2rad(10);
rp = R_mars*theta_pole  % [m] distance from pole

rp = 5.9158e+05

The distance to the dichotomy boundary is 

theta_bnd = acos(1/3);
l = R_mars*(pi-theta_bnd) % [m] distance to dichotomy bnd

l = 6.4761e+06

as before.
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Operators in cylindrical coordinates

Cylindrical coordinates

The advantage of the dyadic notation (∇, , ) is that it hides the coordinate system. Here we show that
the same can be achived by the discrete operators D and G. The definition of standard variables in cylindrical
coordinates is shown in the figure below.

Here  is the radial coordinate and φ is the circumferecial coordinate. The associated definition of the
gradient and the divergence 

•

•

where .

For the one-dimensional model we only need the the ρ direction and assume that there is no change
in φ and z. In the one dimensional cylindrical geometry, , we have the operators

•
gradient: 

•
divergence: 

The gradient is the same as in linear coordinates, but the divergence changes. So we have to update the
function build_ops.m to account for cylindrical geometry.

Geometric interpretation of the radius terms
The key to the correct discretization is the geometric understanding of the two radius terms in the divergence.
To facilitate this consider the equation for the steady state temperature with a heat source

in compact dyadic notation   
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or written explicitly in terms of the radial coordinate  .

Note, here we have multiplied through by x, so that it is on the right hand side. In this form, the geometric
origin of the two radius terms becomes clearer.

• The term  suggests that this x represents that growth of the interfacial area with increasing
radius, because K is associate with the flux. This radius term should therefore evaluated at the cell
faces Grid.xf.

• The term  suggests that this x represents the growth of the volume with increasing radius,

because  is the volumetic source term. This radius term should therefore be evaluated at the cell
centers Grid.xc.

Discretization of the divergence
The radial component of the discrete divergence matrix in cylindical geometry can therefore be obtained as
follows:

Grid.xmin = 0.1; Grid.xmax = 1; Grid.Nx = 35;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
fs = spalloc(Grid.Nx,1,0);
 
% Cylindrical coordinate system (1D radial)
Rinv = spdiags(1./Grid.xc,0,Grid.Nx,Grid.Nx);
R = spdiags(Grid.xf,0,Grid.Nfx,Grid.Nfx);
D = Rinv*D*R;
L = -D*G;

Note that including the origin, , is not a problem because the term  is evaluated at cell centers!

Cyindrical aquifer with polar recharge

Dimensional

The equations for the steady confined cylindrical aquifer with polar recharge is given by

 on 

with the boundary conditions

 and .

The parameter values are as before

yr2s = 60^2*24*365.25;  % second per year
rho = 1e3;              % [kg/m^3] desity of water 
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grav = 3.711;           % [m/s^2] grav. acceleration on Mars
k = 1e-11;              % [m^2] permeability (Hanna & Phillips 2005)
mu = 1e-3;              % [Pa s] water viscosity
ho = -500;              % [m] sea level
b = 5e3; % [m] aquifer thickness
Qi = 1e9/yr2s           % [m^3/s] polar rechrge rate Q = 1km^3/yr from Clifford 1993

Qi = 31.6881

% derived values
K = k*rho*grav/mu;      % [m/s] hydraulic conductivity
qi = @(rp) Qi/(b*2*pi*rp); % [m/s] recharge flux 

Dimensionless 

Choosing the dimensionless variables  and we have the dimensionless equations

 on 

where  is a geometric dimensionless parameter. The dimensionless boundary conditions are given
by

 and .

Analytic solutions

The dimensionless analytic solution is given by

 and .

hD_ana = @(rD,rho) -rho*log(rD);
qD_ana = @(rD,rho) rho./rD;

The solution is show in the figure below for increasing co-lattidudes of the polar boundary of 2, 4, 6, 8 and 10
degrees

deg_vec = [2:2:10];
figure('position',[10 10 900 600])
for i = 1:length(deg_vec)
    theta_pole = deg2rad(deg_vec(i));
    rp = R_mars*theta_pole;  % [m] distance from pole
    rho = rp/l;
    rD = linspace(rho,1,1e3);
    subplot 121
    plot(rD,hD_ana(rD,rho)),hold on
    subplot 122
    plot(rD,qD_ana(rD,rho)),hold on
end
subplot 121
xlabel 'r''', ylabel 'h''', pbaspect([1 .8 1])
legend('\theta_p = 2','\theta_p = 4','\theta_p = 6','\theta_p = 8','\theta_p = 10')
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subplot 122
xlabel 'r''', ylabel 'q''', pbaspect([1 .8 1])

The dimensional solution is obtined substituting the definitions of the dimensional scales to obtain

 and .

h_ana = @(r,rp) ho - qi(rp)*rp/K*log(r/l);
q_ana = @(r,rp) qi(rp)*rp./r;

The dimensional solution for the same set of angles of the polar boundary is shown below

figure('position',[10 10 900 600])
for i = 1:length(deg_vec)
    theta_pole = deg2rad(deg_vec(i));
    rp = R_mars*theta_pole;  % [m] distance from pole
    r = linspace(rp,l,1e3);
    subplot 121
    plot(r/1e3,h_ana(r,rp)),hold on
    subplot 122
    plot(r/1e3,q_ana(r,rp)),hold on
end
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subplot 121
xlabel 'r [km]', ylabel 'h [m]', pbaspect([1 .8 1])
legend('\theta_p = 2','\theta_p = 4','\theta_p = 6','\theta_p = 8','\theta_p = 10')
subplot 122
xlabel 'r [km]', ylabel 'q [m/s]', pbaspect([1 .8 1])

Now we can evaluate the effect of the polar reacharge on the heads in the aquifer. Polar reacharge only
increases the head by approximately 100 m over its base level, at least for the aquifer permeabilities we have

assumed. The value for polar recharge of   we have assume of towards the upper end of the

range considered by Clifford 1993, which is between 0.01 and 2.2 .

This shows that the choice of the polar boundary has no influence on the the solution in the domain - as
it should be. Of course, this is exactly the example we used to motivae the conservative finite difference
method in lecture 3. The flux q develops a strong boundary layer as . This would be very difficultto
model with methods that do not conserve mass discretely. As such we expect this problem to be solved well
by our approach.

Numerical solution
The construction of the modified divergence will be integrated into the function build_ops.m and can be
activated by a new field in the Grid structure called Grid.geom = 'cylindrical_r';.

theta_pole = 5;
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rp = R_mars*deg2rad(theta_pole);     % [m] distance from pole
rho = rp/l;
Grid.xmin = rho; Grid.xmax = 1; Grid.Nx = 10;
Grid.geom = 'cylindrical_r'; % THIS IS THE NEW PART
[Grid] = build_grid(Grid);
[D,G,I] = build_ops(Grid);
L = -D*G;
fs = zeros(Grid.N,1);
 
%% BC's
BC.dof_dir = Grid.dof_xmax;
BC.dof_f_dir = Grid.dof_f_xmax;
BC.g = hD_ana(Grid.xc(BC.dof_dir),rho);
BC.dof_neu = Grid.dof_xmin;
BC.dof_f_neu = Grid.dof_f_xmin;
BC.qb = 1;
[B,N,fn] = build_bnd(BC,Grid,I);
 
% Solve for h and q
hD = solve_lbvp(L,fs+fn,B,BC.g,N);
qD = comp_flux(D,1,G,hD,fs,Grid,BC);
 
% Plot solution
rD = linspace(rho,1,1e3);
figure('position',[10 10 900 600])
subplot 121
plot(rD,hD_ana(rD,rho),'-',Grid.xc,hD,'o','markerfacecolor','w'),hold on
xlabel 'r''', ylabel 'h''', pbaspect([1 .8 1])
 
subplot 122
plot(rD,qD_ana(rD,rho),'-',Grid.xf,qD,'o','markerfacecolor','w'),hold on
xlabel 'r''', ylabel 'q''', pbaspect([1 .8 1])
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