# Spherical shell coordinates

theta bnd = acos(1/3);

clear
set\_demo\_defaults;
R\_mars = 3389508; % [m] Mars' mean radius
grav = 3.711; % [m/s^2] grav. acceleration on Mars

We have seen that moving to cylindrical coordinates removed the ambiguity in the interpretation of the polar recharge. To properly incorporate precipitation we need to go to a geometry with a meaningful surface area. In 1D linear coordinates the surface area is an arbitrary function of the undetermined width. In cylindrical coordinates we have a proper surface area, but given that the southern highlands aquifer stretches halfway through the northern hemisphere the we have a huge error in the actual surface area compared to a sphere, see figure. The same would be true for any estimate of the actual groundwater volume.

```
theta_bnd_deg = rad2deg(theta_bnd)
theta_bnd_deg = 70.5288
theta_vec = linspace(0,90+theta_bnd_deg,100);
l = R_mars*deg2rad(theta_vec); % [m] distance to dichotomy bnd
A_cyl = pi*1.^2;
A_cap = 2*pi*R_mars^2*(1-cos(deg2rad(theta_vec)));
figure('position',[10 10 900 600])
subplot 121
plot(theta_vec,A_cyl/1e6,theta_vec,A_cap/1e6)
xlabel '\theta [\circ]', ylabel 'A [km^2]', pbaspect([1 .8 1])
legend('Cylinder','Sphere','location','northwest')
subplot 122
plot(theta_vec,(A_cyl-A_cap)./A_cap*100)
xlabel '\theta [\circ]', ylabel 'error [%]', pbaspect([1 .8 1])
```



## **Spherical coordinates**

This motivates us to discretize the discrete operators in spherical coordinates. The definition of standard variables in spherical coordinates is shown in the figure below.



Here *r* is the radial coordinate,  $\theta$  is the co-lattitude and  $\varphi$  is the circumfrencial coordinate. The associated definition of the gradient and the divergence

• 
$$\nabla h = \frac{\partial h}{\partial r} \hat{\boldsymbol{\rho}} + \frac{1}{r} \frac{\partial h}{\partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial h}{\partial \varphi} \hat{\boldsymbol{\varphi}}$$

• 
$$\nabla \cdot \mathbf{q} = \frac{1}{r^2} \frac{\partial (r^2 q_r)}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \theta} (\sin(\theta) q_\theta) + \frac{1}{r \sin(\theta)} \frac{\partial q_{\varphi}}{\partial \varphi}$$

where  $\mathbf{q} = [q_r q_{\theta}, q_{\varphi}].$ 

The southern highlands aquifer is in a spherical shell, so that  $r = R_{\text{Mars}}$  is fixed. To obtain a one-dimensional model we assume no change in the circumferential direction,  $\varphi$ , so that  $\partial/\partial \varphi = 0$ . Therefore, the remaining independent variable is the co-lattitude,  $\theta$ , and one-dimensional operators in sherical shell geometry,  $x = \theta$ , are

• 
$$\nabla h = \frac{1}{R_{\text{Mars}}} \frac{dh}{dx}$$
  
•  $\nabla \cdot \mathbf{q} = \frac{1}{R_{\text{Mars}}} \frac{d}{dx} (\sin(x) q)$ 

In spherical shell coordinates both the divergence and the gradient change. Again we have to amend the function build\_ops.m.

### **Discrete operators**

The discrete divergence and gradient matrix in spherical shell geometry can therefore be obtained as follows:

```
Grid.xmin = 0.1; Grid.xmax = 1; Grid.Nx = 35;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
% Modification for spherical shell
Grid.R_shell = R_mars;
Rf = spdiags(sin(Grid.xf),0,Grid.Nx+1,Grid.Nx+1);
Rcinv = spdiags(1./(Grid.R_shell*sin(Grid.xc)),0,Grid.Nx,Grid.Nx);
D = Rcinv*D*Rf;
G = G/Grid.R_shell;
L = -D*G;
```

Similar to the cylindrical coordinates we evaluate terms outside the divergence at cell centers and terms inside the divergence at cell faces.

### Spherical shell aquifer with precipitation

#### Dimensional

The equations for the steady confined aquifer with precipitation on a spherical shell are given by

$$\frac{1}{R_{\text{Mars}}\sin(\theta)}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin(\theta)\,bK\frac{1}{R_{\text{Mars}}}\frac{\mathrm{d}h}{\mathrm{d}x}\right) = q_p \text{ on } \theta \in [0,\theta_b]$$

with the boundary conditions

$$\frac{\mathrm{d}h}{\mathrm{d}\theta}\Big|_0 = 0 \text{ on } h(\theta_b) = h_o$$

Th parameter values are as before

```
yr2s = 60^2*24*365.25; % second per year
                      % [kg/m^3] desity of water
rho = 1e3;
grav = 3.711;
                      % [m/s^2] grav. acceleration on Mars
k = 1e - 11;
                      % [m^2] permeability (Hanna & Phillips 2005)
mu = 1e-3;
                      % [Pa s] water viscosity
ho = -500;
                      % [m] sea level
b = 5e3;
                       % [m] aquifer thickness
theta bnd = pi-acos(1/3); % [rad] angel dichotomy boundray from south pole
% derived values
K = k*rho*grav/mu; % [m/s] hydraulic conductivity
```

#### Dimensionless

The angle,  $\theta$ , in radiants is defined as ratio of the arc length, s, to the radius, R, of the circle,  $\theta = s/R$ , and hence dimensionless and of order one. We define the characteristic scale  $h_c = q_p R_{\text{Mars}}^2/(bK)$  and the associated dimensionless head  $h' = (h - h_o)/h_c$ . This induces the scale  $q_c = q_p R_{\text{Mars}}/b$  for the flux. The dimensionless equations are

$$-\frac{1}{\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}h'}{\mathrm{d}\theta}\right) = 1 \text{ on } \theta \in [0,\theta_b]$$

with the boundary conditions

 $\frac{\mathrm{d}h'}{\mathrm{d}\theta}\Big|_0 = 0 \text{ and } h'(\theta_b) = 0.$ 

The dimensionless flux is simply  $q' = -\frac{dh'}{d\theta}$ . The only dimensionless parameter is therfore the angle of the dichotomy boundary  $\theta_b$ .

**Analytic solutions** 

The dimensionless analytic solution is given by

$$h' = \log\left(\frac{\cos\theta + 1}{\cos\theta_b + 1}\right)$$
 and  $q' = \frac{1 - \cos\theta}{\sin\theta} = \csc\theta - \cot\theta$ .

```
hD_ana = @(theta,theta_bnd) log((cos(theta)+1)/(cos(theta_bnd)+1));
qD_ana = @(theta) csc(theta) - cot(theta);
```

The solution is show in the figure below for increasing co-lattidudes of the dichotomy boundary

```
h_scale_plot = 0.3;
theta_bnd_vec = [theta_bnd:-theta_bnd/5:theta_bnd/5];
figure('position',[10 10 900 600])
for i = 1:length(theta_bnd_vec)
```

```
theta = linspace(0,theta bnd vec(i),1e2);
    subplot(2,2,1)
    plot(theta, hD ana(theta, theta bnd vec(i))); hold on
    subplot(2,2,3)
    plot(theta,qD ana(theta)); hold on
    subplot(2,2,[2 4])
    x h = (1+hD ana(theta,theta bnd vec(i))*h scale plot).*sin(theta);
    z h = (1+hD ana(theta,theta bnd vec(i))*h scale plot).*cos(theta);
    plot(x h,-z h,'-','linewidth',1.5), hold on
end
subplot(2,2,1)
ylabel 'h''', xlabel '\theta'
subplot(2,2,3)
ylabel 'q''', xlabel '\theta'
subplot(2,2,[2 4])
theta sphere = linspace(0,pi,5e2);
x base = sin(theta sphere);
z base = cos(theta sphere);
plot(x base, z base, 'k', 'linewidth', 1.5)
axis equal
xlim([0 1.5]), ylim(1.5*[-1 1])
```



Whe looking at the picture of the head on the sphere, keep in mind that this is not the groundwater table, we are still looking at a confined aquifer that looks something like the sketch below



### **Numerical solution**

The construction of the modified divergence and gradient will be integrated into the function build\_ops.m and can be activated by a new field in the Grid structure called Grid.geom = 'spherical\_shell';.

Note, for the flux computations the vectors Grid.V and Grid.A have to be aupdated appropritely!

Note also that all the other functions (build\_bnd.m, solve\_lbvp.m, comp\_flux.m) do not need to be updated.

```
theta ana = linspace(0,theta bnd,1e2);
Grid.xmin = 0;
Grid.xmax = theta bnd;
Grid.Nx = 1e1;
Grid.geom = 'spherical shell';
Grid.R shell = 1;
Grid = build grid(Grid);
% Operators
[D,G,I] = build ops(Grid);
L = -D*G;
fs = ones(Grid.Nx,1);
% Boundary conditions
BC.dof dir = [Grid.dof xmax];
BC.dof f dir = Grid.dof f xmax;
BC.g = hD ana(Grid.xc(Grid.dof xmax), theta bnd);
BC.dof neu = [];
BC.dof f neu = [];
BC.qb = [];
[B,N,fn] = build bnd(BC,Grid,I);
hD = solve lbvp(L,fs,B,BC.g,N);
qD = comp flux(D,1,G,hD,fs,Grid,BC);
```



