
Vectorized programing in Matlab
The key to proper programing in Matlab is to understand vectorization. Vectorization speeds up Matlab code
dramatically and makes it more readable. All code for this class has to be written vectorized!

What is vectorization?
Suppose you have two vectors and that represent two functions.

clear all, close all
set_defaults();
x = linspace(0,1,40);
a = sin(10*pi*x);
b = exp(x)-1;
plot(x,a,'o-','markersize',10,'markerfacecolor','w'), hold on
plot(x,b,'o-','markersize',10,'markerfacecolor','w'), hold off
xlabel 'x', legend('a','b','location','northwest')

Now you would like to compute the discrete representation of the function , by

multiplying the entries of and elementwise. In Fortran or C++ you do this using a for-loop as follows.

clear f
N = length(a);
for n = 1:N

1

 f(n) = a(n)*b(n);
end
plot(x,f,'o-','markersize',10,'markerfacecolor','w')
xlabel('x'), ylabel('f(x) = a(x) b(x)')

In Matlab you can also do this vectorized, i.e., without writing the for-loop explicitly.

size(a)

ans = 1×2
 1 40

size(b)

ans = 1×2
 1 40

f1 = a*b' % just scalar product of two vectors

f1 = -2.0143

f2 = a.*b; % vectorized multiplication - note the DOT!
norm(f-f2)

ans = 0

2

Here the is the scalar product and hence a single number. In contrast is a vector such that

the n-th entry is . This is refereed to as "element-wise multiplication" and equifalent to the for-loop
above.

In Matlab this for-loop becomes very slow as N increases. The code below demonstrates this and uses
the tic-toc function in Matlab to compare vectorised and for-loop implementation.

Nvec = [1e1 1e2 1e3 1e4 1e5 1e6];
for i=1:length(Nvec)
 N = Nvec(i);
 x = linspace(0,1,N);
 a = sin(10*pi*x);
 b = exp(x)-1;
 clear f_loop f_vec
 % Vectorized
 tic
 f_vec = a.*b;
 time_vec(i) = toc;
 pause(.1)
 % For-loop
 tic
 for n = 1:N
 f_loop(n) = a(n)*b(n);
 end
 time_for(i) = toc;
 pause(.1)
 fprintf('N = %2.0e: t_vec = %3.2e [sec]; t_for = %3.2e.\n',N,time_vec(i),time_for(i))
end

N = 1e+01: t_vec = 9.32e-04 [sec]; t_for = 1.40e-03.
N = 1e+02: t_vec = 3.78e-05 [sec]; t_for = 1.29e-03.
N = 1e+03: t_vec = 1.90e-04 [sec]; t_for = 2.46e-03.
N = 1e+04: t_vec = 7.32e-05 [sec]; t_for = 2.48e-02.
N = 1e+05: t_vec = 1.03e-03 [sec]; t_for = 2.12e-01.
N = 1e+06: t_vec = 2.76e-03 [sec]; t_for = 2.17e+00.

loglog(Nvec,time_for,'o-','markersize',10,'markerfacecolor','w'), hold on
loglog(Nvec,time_vec,'o-','markersize',10,'markerfacecolor','w'), hold off
legend('for-loop','vectorized','location','northwest')
xlabel('N'), ylabel('time [sec]')

3

https://www.mathworks.com/help/matlab/ref/tic.html

When the vectors become longer for-loop is increasingly slow compared to the vectrized implementation.
Vectorized implementation is therefore always preferred. If the for-loop cannot be avoided,Matlab claims it
can be accelerated significantly by pre-allocating the memory for the new vector . As you will see below this
is not very significant.

for i=1:length(Nvec)
 N = Nvec(i);
 x = linspace(0,1,N);
 a = sin(10*pi*x);
 b = exp(x)-1;
 clear f_pre
 % For-loop with pre-allocation
 tic
 f_pre = zeros(N,1);
 for n = 1:N
 f_pre(n) = a(n)*b(n);
 end
 time_pre(i) = toc;
 pause(.1)
 fprintf('N = %2.0e: t_pre = %3.2e.\n',N,time_pre(i))
end

N = 1e+01: t_pre = 8.79e-04.
N = 1e+02: t_pre = 2.14e-04.
N = 1e+03: t_pre = 1.18e-02.
N = 1e+04: t_pre = 2.36e-02.

4

N = 1e+05: t_pre = 1.99e-01.
N = 1e+06: t_pre = 1.72e+00.

semilogx(Nvec,time_for./time_vec,'o-','markerfacecolor','w'), hold on
semilogx(Nvec,time_pre./time_vec,'o-','markerfacecolor','w'), hold off
xlabel('N'), ylabel('time/time_{vec}')
legend('no pre-allocation','pre-allocation','location','northwest')

Vectorization also works for matrices!
Despite the name the idea of "element-by-element" operations also translates to matrices and in fact any
type of array.

This is most commonly used in plotting 2D and 3D functions.Suppose we want to plot the

functions on the domain and . First we generate equally spaced

vectors and and replicate them into matrices and using the Matlab function meshgrid. A

matrix containing the function values can the be evaluated vectorized.

x = linspace(0,1,1e2); y = x;
[X,Y] = meshgrid(x,y);
G = sin(10*pi*X).*exp(X)./(2+5*Y);
surf(X,Y,G)
xlabel('x'), ylabel('y'), zlabel('g(x,y)')

5

https://www.mathworks.com/help/matlab/ref/meshgrid.html

Some general notes on vectorization
For vectorization to work all arrays must have the same dimension. The most common reason for vectorized
code to fail is that the array dimensions do not match. In this case, Matlab will give an error message "Matrix
dimensions must agree".

A = rand(3,4); B = rand(4,5);
% C = A.*B;

In this case, use the Matlab function size to investigate the dimensions of the arrays.

size(A)

ans = 1×2
 3 4

size(B)

ans = 1×2
 4 5

Not all mathematical operations require vercorization. Addition, subtraction and scalar multiplication do not
require vectorization. Multiplication and division do need vectorization.

6

Auxillary function definitions

function [] = set_defaults()
 set(0, ...
 'defaultaxesfontsize', 18, ...
 'defaultaxeslinewidth', 2.0, ...
 'defaultlinelinewidth', 2.0, ...
 'defaultpatchlinewidth', 2.0,...
 'DefaultLineMarkerSize', 12.0);
end

7

