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Redox disequilibria as energy source for life

Russell et al. (2017)

Vance et al. (2016)

Requires downward oxidant transport through the ice-shell.

What are the physics of the transfer processes?
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Proposed ice-shell transfer processes

Resurfacing

Subduction Impact Brine percolation

Greenberg (2010)

Kattenhorn and
Prockter (2014)

Cox and Bauer
(2015)

Sotin et al. (2002)

Here we focus on oxidant transport by downward brine percolation.
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Surface features indicating near surface brines

Impact craters Chaos terrains Lenticulae (domes)

NASA NASA NASA

Assume near-surface brines form in region saturated with oxidants.
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Distribution of chaotic terrains

Senske et al. (2018)
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Does brine percolate downward or not?

Efficient downward percolation

Formation of perched aquifers

Sotin (2002) Kalousová (2014)

Schmidt (2011) Manga (2017)

Type of behavior is determined by permeability of underlying crust.
Are small amounts of partial melt present throughout the crust?
Does this partial melt form a connected network?

Marc Hesse GEO 325M/398M Januaryr 22, 2019 6 / 19



Does brine percolate downward or not?

Efficient downward percolation Formation of perched aquifers

Sotin (2002) Kalousová (2014) Schmidt (2011) Manga (2017)

Type of behavior is determined by permeability of underlying crust.
Are small amounts of partial melt present throughout the crust?
Does this partial melt form a connected network?

Marc Hesse GEO 325M/398M Januaryr 22, 2019 6 / 19



Does brine percolate downward or not?

Efficient downward percolation Formation of perched aquifers

Sotin (2002) Kalousová (2014) Schmidt (2011) Manga (2017)

Type of behavior is determined by permeability of underlying crust.
Are small amounts of partial melt present throughout the crust?
Does this partial melt form a connected network?

Marc Hesse GEO 325M/398M Januaryr 22, 2019 6 / 19



Equilibrium melt percolation

Dihedral angle θ

Wetting: θ ≤ 60◦ Non-wetting: θ > 60◦
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Does brine connect?

Ice-brine dihedral angle

Brine pore network Permeability of ice

McCarthy (2012)

Rempel (2001) Kalousová (2014)

In a partially molten ice shell brine is mobile at low melt fraction.
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Simple model for brine transport in ductile ice
Mass conservation:
Brine: (ρbφ)t +∇ · (φρbvb) = 0
Ice: (ρi(1− φ))t +∇ · ((1− φ)ρivi) = 0

where φ is the porosity, ρp and vp are density and velocity of the p-phase.

Constitutive laws:
Compaction relation: p = pb − pi = ξφ∇ · vi
Darcy’s law: q = φ(vb − vi) = −kφ/µ (∇p+ ∆ρgẑ)

where kφ is permeability and ξφ is bulk viscosity and ∆ρ is density difference

Governing equations for φ and p are

Porosity evolution: φt +∇ · [φvi] = ∇ · vi
Two-phase continuity: −∇ · [q + vi] = 0

Internal length-scale: δ =
√
kφξφ/µ (compaction length)
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Simple model problem for oxidant transport

Porosity/melt fraction Oxidant/tracer
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Slow uniform transport: δ/H ∼ 1

Slow oxidant transport in uniform front as entire crust is dilated.
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Just in case the movie fails!

Slow oxidant transport in uniform front as entire crust is dilated.
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Fast localized transport: δ/H � 1

Faster oxidant transport that localizes into 2D porosity waves.
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Just in case the movie fails!

Faster oxidant transport that localizes into 2D porosity waves.
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Fluid recirculation in 2D porosity waves

Jordan and Hesse (2018)
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Changes in transport dynamics over time?

Dynamics are determined by:

δ

H
=

√
kφξφ√
µH

Thermo-orbital evolution leads to
Large variation in H.
Variation in heat production.

affects porosity, φ.
affects permeability, kφ.
affects bulk viscosity, ξφ.

Explore effect of thermo-orbital
evolution on oxidant transport.

Hussmann and Spohn (2004)
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What if the there is a layer of solid ice?

Porosity/melt fraction

(very) low melt fraction
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3 kmhigh melt fraction

Does solid ice prevent brine drainage?

Possible penetration mechanisms:

Brine wicks into ice by capillary forces.
Partial melting induced by latent heat
released from brine crystallization.
Transfer of elastic stresses from the
volume expansion of solidifying brine.

Likely a broad range of behaviors.
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Summary and conclusions

Redox
disequilibria

Near-surface
melting

Transport
Regimes

To percolate, or
not to percolate:

Need O2 transport.

Brine percolation. Change over time. That is the question.
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Thank you for your attention.
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