
Discretization of the Advection-Diffusion Equation

clear, clc, close all
set_demo_defaults

Consider the Advection-Diffusion Equations (ADE) for the heat transport by advection and conduction

where we have assumed that ρ and  are constant and divided by them, so that  is the thermal
diffusivity. Using the θ-method and our discrete operators we discretize this equation as follows

Here both the advective and diffusive/conductive terms are treated equally. Let's first consider the purely
advective case,  and , so that

where implicit and explicit matrices are given by

here  is the matrix that computes the upwind flux based on the sign of . 

v0= 1;
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 30;
Grid.periodic = 'x-dir';
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
v = v0*ones(Grid.Nfx,1); A = flux_upwind(v,Grid);
L = D*A; M = I;
IM = @(theta,dt) M + (1-theta)*dt*L;
EX = @(theta,dt) M - theta*dt*L;

Explicit advective time step restriction (CFL-condition)

Similar to the diffusive case the Forward Euler Method ( ) is only conditionally stable. Again we can

confirm this by looking at the eigenvalue spectrum of the resulting amplification matrix, .
For an advection problem we cannot impose natural boundary conditions, hence we impose periodic BC's -
something we have not discussed in class (but not very difficult).

theta = 1;
dt_max = Grid.dx/(v0);
dt_vec = logspace(-4,-1,3e2);

1



 
figure
for i = 1:length(dt_vec)
    A = inv(IM(theta,dt_vec(i)))*EX(theta,dt_vec(i));
    lam = eig(full(A));
    lam_max_FE(i) = max(lam);
    lam_min_FE(i) = min(lam);
end
semilogx(dt_vec,lam_max_FE,'k'), hold on
semilogx(dt_vec,lam_min_FE,'k')
semilogx(dt_vec,ones(size(dt_vec)),'g--','linewidth',2)
semilogx(dt_vec,-ones(size(dt_vec)),'g--','linewidth',2)
semilogx(dt_max*[1 1],[-2 2],'r','linewidth',4), hold off
ylim([-2 2])
xlabel '\Delta t [s]'
ylabel('\lambda')
title 'Stability of the Forward Euler Method: \theta = 1'

For  the magnitude of the largest eigenvalues exceeds 1 and the method is unstable (red line).
This criterion is referred to a the Courant-Friedrichs-Levy condtion or CFL-condition.

Comparison to Neumann condtion for diffusion
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It is worth comparing the explicit time step limits for both diffusion and advection as function of the
dimensionless grid size, , and the Peclet number, , where L is the domain size. Given

the two conditions on the time step  and  we have the ratio

so that the explicit timestep is limited by diffusion when . Therefore, as the grid is refined the time

step is always limited by diffusion. In fluid dynamical problems surch as convection in the ice shell, ,
so that advection may limit the time step for realistic problems with finite grid size.

Implicit advective time stepping

Of course, we can also choose the implicit Backward Euler (BE) and Crank-Nicholson Methods (CN) to time
step the advection equation. 

theta = 1;
dt_max = Grid.dx/(v0);
dt_vec = logspace(-4,1,3e2);
lam_max_BE = zeros(length(dt_vec),1);
lam_max_CN = lam_max_BE;
lam_min_BE = lam_max_BE;
lam_min_CN = lam_max_BE;
 
figure
for i = 1:length(dt_vec)
    theta = 0; % BE
    A = inv(IM(theta,dt_vec(i)))*EX(theta,dt_vec(i));
    lam = eig(full(A));
    lam_max_BE(i) = max(lam);
    lam_min_BE(i) = min(lam);
    
    theta = 0.5; % CN
    A = inv(IM(theta,dt_vec(i)))*EX(theta,dt_vec(i));
    lam = eig(full(A));
    lam_max_CN(i) = max(lam);
    lam_min_CN(i) = min(lam);
end
semilogx(dt_vec,lam_min_CN,'k:'), hold on
semilogx(dt_vec,lam_min_BE,'k')
semilogx(dt_vec,ones(size(dt_vec)),'g--','linewidth',2)
semilogx(dt_vec,-ones(size(dt_vec)),'g--','linewidth',2)
semilogx(dt_max*[1 1],[-2 2],'r','linewidth',4), hold off
ylim([-2 2])
xlabel '\Delta t'
ylabel('\lambda')
title 'Implicit Methods for Advection: \theta < 1'
legend('BE','CN')
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