Boundary Conditions: Dirichlet BC

```
clear, close all, clc
set_defaults()
```

Here we consider the following simplified problem for the crustal geotherm
$-\nabla \cdot[\kappa \nabla T]=\rho H_{0} e^{-z / h_{r}}$ on $x \in[0, h]$,
where source term is radiogenic heat production in the crust that decaus exponentially with depth. This differential equation is subject to the two boundary condtions

$$
T(z=0)=0 \text { and }\left.\mathbf{q} \cdot \hat{\mathbf{z}}\right|_{h}=0,
$$

where we have set both the surface temperature and the mantle heat flux to zero, $T_{0}=0$ and $q_{m}=0$. The no heat flow boundary condition is the "natural boundary condition", because it is build into our discrete gradient operator, G. Below we discuss how to enforce the remaining homogeneous Diriclet boundary condition at $z=h$. Assume the following problem paramters:

```
qs = 65e-3; % ave. surface heat flow [W/m^2]
rho = 2700; % ave. crustal density [kg/m^3]
H0 = 9.6e-10; % heat production near surface [W/kg]
h = 35e3; % ave. depth of crust [m]
kappa = 3.35; % thermal conductivity [W/(m K)]
hr = 10e3;
```

The analytical solution for the crustal geotherm and heat flow are given by

$$
\begin{aligned}
& T=T_{0}+\left(\frac{q_{m}}{\kappa}-\frac{\rho H_{0} h_{r}}{k} e^{-h / h_{r}}\right) z+\frac{\rho H_{0} h_{r}^{2}}{k}\left(1-e^{-z / h_{r}}\right) \\
& q=-q_{m}-\rho H_{0} h_{r}\left(e^{-z / h_{r}}-e^{-h / h_{r}}\right)
\end{aligned}
$$

$$
q=@(z, q m)-q m-r h o * H 0 * h r *(\exp (-z / h r)-\exp (-h / h r)) ;
$$

$$
T=@(z, T 0, q m) T 0+(q m / k a p p a-r h o * H 0 * h r / k a p p a * \exp (-h / h r)) * z+r h o * H 0 * h r \wedge 2 / k a p p a *(1-e x p
$$

$$
\text { zplot }=\text { linspace }(0, h, 100) ;
$$

Imposing Dirichlet BC's by eliminating constraints

Building the system matrix L

Using discrete operators the partial differential equation can be discretized as follows
$\mathbf{L}^{\star} \mathbf{u}=\mathbf{f s}$
where $\mathbf{L}=-\mathrm{D} * \mathrm{Kd} * \mathrm{G}$ is the dicrete Laplacian operator, \mathbf{u} is the unknown vector of temperatures and $\mathbf{f s}$ is the right hand side vector. Today we will discuss how to discretize the boundary condtions.

Without boundary conditions the problem is ill-posed and does not have a solution. This is reflected in the condition number of the discrete Laplacian operator, \mathbf{L}.

```
Grid.xmin = 0; Grid.xmax =h; Grid.Nx = 20;
Grid = build_grid(Grid);
[D,G,I] = build_ops(Grid);
L = -D*kappa*G;
condest(L)
```

ans $=\operatorname{Inf}$

A matrix with infinite condition number has no inverse. This is because there is an infinite number of possible solutions to the Laplace equation, only the boundary conditions (BC's) make the solution unique.

Dirichlect BC's as a linear system

Dirichlet BC's prescribe the solution on the boundary. In the discrete solution they prescribe the solution in the cells neighboring the boundaries. This constraint can be formulated as a linear system,

```
B*u}=
```

where B is the constrain matrix, u is the vector of unknowns (temperature), and \mathbf{g} is a right hand side vector. The constrain matrix B is Nc by Nx, where Nc is the number of constraints, i.e., cells along Dirichlet boundaries with prescibed temperatures. This means that Dirichlet BC's provide constraints that reduce the overall number of unknown we need to solve for.

Therefore the boundary value problem is described by two linear systems

1) $\mathbf{L} \star \mathbf{u}=\mathbf{f s}$, arising from the PDE, where L is the $N x$ by $N x$ system matrix
2) $\mathbf{B} * \mathbf{u}=\boldsymbol{g}$, arising from the $B C$'s, where \mathbf{B} is the Nc by Nx constraint matrix

Neither \mathbf{L} nor \mathbf{B} is invertible, both allow infinite solutions. To find the unique solution to the boundary value problem, the constraints in B must be eliminated from the system matrix \mathbf{L}.
\Rightarrow we need to understand how to eliminate constraints

Building the constraint matrix

Suppose we have the following two Nc by 1 column vectors:

1. dof_dir: contains the degrees of fredom (dofs), i.e., cell numbers, of all cells along the Dirichlet boundary.
2. \mathbf{g} : contains the prescribed values the unknown is set to along the Dirichlet boundary.

The constraint matrix, B, needs to set the unknown in dof_dir to \mathbf{g}. The matrix B therefore comprises the rows of the Nx by Nx identity matrix, I, that correspond to dof_dir. Therefore B can be built as follows

```
dof_dir = [Grid.dof_xmin];
B = I(dof_dir,:);
```

ans $=1 \times 2$

The resulting constraint matrix has one row for every cell that is set to a prescribed value by the Dirichlet BC's. In the 1D case with Dirichlet BC's at one ends Nc = 1 and B only has 1 rows. This simple construction will remain the same, even in higher dimensions.

Homogeneous constraints

Initially, we consider a problem with homogeneous constraints, i.e., $T_{0}=0$. The discrete problem is then given by

PDE: $\mathbf{L}{ }^{\star} \mathbf{u}=\mathbf{f s}$
BC's: $\mathbf{B * u}=0$

Reduced linear system

Given that the constraints in B reduce the number of unknown we expect to solve a smaller or reduced linear system of size $(\mathrm{Nx}-\mathrm{Nc})$ by $(\mathrm{Nx}-\mathrm{Nc})$

Lr* $u r=f s r$.

Here the variables are:

1. $u r$ is the $(N x-N c)$ by 1 reduced vector of unknows.
2. $\mathrm{f} \boldsymbol{s} \mathrm{r}$ is the $(\mathrm{Nx}-\mathrm{Nc})$ by 1 reduced r.h.s. vector.
3. Lr is the $(\mathrm{Nx}-\mathrm{Nc})$ by $(\mathrm{Nx}-\mathrm{Nc})$ reduced system matrix.

Projection matrix

What is the relation between u and $u r$, $f s$ and $f s r$, and L and $L r$? Two vectors of different length are related by a rectangular matrix
$\mathbf{u}=\mathbf{N}{ }^{*} \mathbf{u r}$ and $\mathbf{f s}=\mathbf{N}{ }^{\star} \mathbf{f s r}$
where \mathbf{N} is a $\mathbf{N x}$ by $(N x-N c)$ matrix. Here \mathbf{N} is any basis for the nullspace of the constraint matrix \mathbf{B}. The nullspace of \mathbf{B} is simply the set of all solutions that satisfy $\mathbf{B} * \mathbf{u}=0$, i.e., all the possible solutions that satisfy the homogeneous boundary conditions. If we search for solutions to $\mathbf{L *} \mathbf{u}=\mathbf{f s}$ in the nullspace of B, then the BC's are automatically satisfied. In Matlab the nullspace of a matrix can be found with the function null() or spnull() for sparse matrices.

```
N = spnull(B);
size(N)
```

ans $=1 \times 2$
$20 \quad 19$
spy(N), title 'N'

Assume that \mathbf{N} is orthonormal, i.e., that the dot product between all columns is unity. the it follows that

1. $\mathbf{N}^{\prime *} \mathbf{N}=\operatorname{Ir}$, where Ir is the $(N x-N C)$ by $(N x-N C)$ identity matrix in the reduced space.
2. $\mathbf{N}^{*} \mathbf{N}^{\prime}=\mathbf{I c}$, where Ic is the Nx by Nx "identity matrix" with Nc zeros on the diagonal.
```
Ir = N'*N;
size(Ir)
ans = 1 1 % 
spy(Ir), title 'Ir'
```



```
non_0_entries_Ir = full(sum(diag(Ir)))
non_0_entries_Ir = 19
```

Ic $=N^{*} N^{\prime}$;
size(Ic)
ans $=1 \times 2$
2020
spy(Ic), title 'Ic'


```
non_0_entries_Ic = full(sum(diag(Ic)))
non_0_entries_Ic = 19
```

In this case, we have the following relationship, $\mathbf{N}^{\prime *} \mathbf{u}=\mathbf{N}^{\prime *} \mathbf{N}^{\star} \mathbf{u r}=\mathbf{I r}{ }^{\star} \mathbf{u r}=\mathbf{u r}$, so that \mathbf{N} and \mathbf{N}^{\prime} allow us to go forth and back between u and ur:
$\mathbf{u}=\mathbf{N}^{*} \mathbf{u r}$
$\mathbf{u r}=\mathbf{N}^{\prime *} \mathbf{u}$
Of course, the same relationship exists between fsr and fs, fsr $=\mathbf{N}^{\prime} \star \mathbf{f s}$.
The matrix N^{\prime} projects the vector of unknowns into the nullspace of B. Note that a proper projection matrix is square, it would simply zero out the entries that are not in the nullspace. Instead, our N ' matrix eliminates these entries, but the idea is the same.

Reduced system matrix

Given the properties of N, defined above, the expression for the reduced system matrix is derived as follows
$\mathbf{L}^{*} \mathbf{u}=\mathbf{f s}$
$\mathbf{N}^{\prime *} \mathbf{L}^{\star} \mathbf{u}=\mathbf{N}^{\prime *} \mathbf{f} \mathbf{s}$

```
N'*L*IC*u = N'*fs
N'*L* (N*N')*u = N'*fs
(N'*L'*N)* (N'*u) = N'*fs
Lr*ur = fsr
where
    1. Lr = N'*'L*N
    2. ur = N'*u
    3. fsrr = N'*fs
```

```
Lr = N'*L*N;
```

Lr = N'*L*N;
size(Lr)
size(Lr)
ans = 1\times2
19 19
spy(Lr), title 'Lr'

```


The reduced system matrix Lr is not singular anymore, because the constraints have been incorporated. This can be checked by estimating the condition number
```

condest(Lr)

```

\section*{Solving problem with homogeneous boundary conditions}

Solving a steady problem with homogeneous boundary conditions therefore requires 3 steps:
1. Compute N and obtain Lr and fsr.
2. Solve reduced problem: ur \(=\mathbf{L r} \backslash\) fsr.
3. Obtain full solution: \(u=N^{\star} \mathbf{u r}\).
```

fs = rho*H0*exp(-Grid.xc/hr);
fsr = N'*fs;
ur = Lr\fsr;
u = N*ur;
u = u+T(Grid.xc(1),0,0); % shift to account for BC
plot(T(zplot,0,0),zplot/1e3), hold on
plot(u,Grid.xc/1e3,'o','markerfacecolor','w','markersize',8)
set(gca, 'YDir','reverse')
xlabel('Temperature [C]')
ylabel('Depth [km]')

```


Note, the boundary condition is set at the center of the first cell, which makes the solution look bad (first order error).

If we shift the solution upward by the appropriate amount the fit to the analytic solution is quite good.

\section*{Heterogeneous constraints}

We are interested in solving for the geotherm which requires heterogeneous, i.e., non-zero, BC's. In this case
\(\mathbf{B} * \mathbf{u}=\mathbf{g}\),
where \(\mathrm{g}=\left[T_{0}\right]\) is a vector containing the two boundary conditions.
To obtain the solution of a problem with heterogeneous boundary conditions, we split the solution into a homogeneous and a particular solution as follows
\(\mathrm{u}=\mathrm{uO}+\mathrm{up}\),
where the homogeneous solution solves \(B^{\star} * u 0=0\) as before and the particular solution solves \(B^{\star} u p=g\). The solution then proceeds in three steps
1. Find a particular solution that satisfies \(B^{\star} u p=g\).
2. Find the associated homogeneous solution, u0.
3. Find total solution \(u=u 0+u p\).

\section*{Find a particular solution}

Note there are many possible particular solutions, here we just find the simplest one. Also not that up does not need to satisfy \(L^{\star}\) up \(=\) fs it only needs to satisfy the boundary conditions \(B^{*}\) up \(=g\). Since the system is not square and \(N x>N c\) and \(B\) has only \(N c\) entries we can again project into a reduced space of size Nc.

It is natural to use \(B\) as projection matrix, so that upr \(=B^{*}\) up and up \(=B^{\prime} *\) upr. We derive the reduced system as follows

B*up \(=g\)
\(B^{*}\left(B^{\prime *}\right.\) upr \()=g\)
\(\left(B^{*} B^{\prime}\right) *\) upr \(=g\)
\(B r * u p r=g\)
where the reduced constraint matrix is \(\mathrm{Br}=\mathrm{B}^{\star} \mathrm{B}^{\prime}\) is Nc by Nc . For the simple constraints we use here Br is simply the Nc b byc identity matrix, so that upr = g . However, our definition is also valid for more general constraints so we'll stick with that. Once upr is known the full particular solution can be recovered, up \(=\) B'*upr \(^{\prime}\).
```

TO = 14; % Mean surface temperature [K]
g = T(Grid.dx/2,T0,0);
Br = B*B';
spy(Br)

```

```

upr = Br\g;
up = B'*upr;

```

\section*{Find associated homogeneous solution}

Once up is known we find the associated homogeneous solution, h0, as follows
\(\mathbf{L}^{*} \mathbf{u}=\mathrm{fs}\)
\(\mathbf{L}^{*}(\mathbf{u O}+\mathrm{up})=\mathrm{fs}\)
\(\mathbf{L}^{\star} \mathbf{u O}=\mathrm{fs}-\mathrm{L}^{\star} \mathrm{up}\)
\(L^{*} \mathbf{u O}=\mathrm{fs}+\mathrm{fd}\)
where \(f d=-\mathbf{L}^{\star}\) up is a new source term due to heterogeneous Dirichlet BC's. But the problem can be solved with the nullspace projection for homogeneous problems as above. Combining the r.h.s. \(f=f s+f d\) we solve as follows
```

N = I; N(:,dof_dir)=[]; % simple/fast way to generate N without spnull()
fd = -L*up;
f = fs + fd;
% Reduced system
fr = N'*f;
Lr = N'*L*N;
uOr = Lr\fr;
uO = N*uOr;

```
```

% Total solution
u = uO + up;
figure
plot(T(zplot,14,0),zplot/1e3), hold on
plot(u,Grid.xc/1e3,'o','markerfacecolor','w','markersize', 8)
set(gca, 'YDir','reverse')
xlabel('Temperature [C]')
ylabel('Depth [km]')
pbaspect([.4 1 1])
title('Continental geotherm')

```

\section*{Continental geotherm \\ }

\section*{Auxillary functions}

This implementation of spnull() is taken from Bruno Luong, thanks man!
```

function Z = spnull(S, varargin)
% Z = SPNULL(S)
% returns a sparse orthonormal basis for the null space of S, that is,
% S*Z has negligible elements, and Z'*Z = I
%
% If S is sparse, Z is obtained from the QR decomposition.
% Otherwise, Z is obtained from the SVD decomposition
%
% Bruno Luong brunoluong@yahoo.com
% History
% 10-May-2010: original version

```
```

%
% See also SPORTH, NULL, QR, SVD, ORTH, RANK
if issparse(S)
[m n] = size(S);
try
[Q R E] = qr(S.'); %\#ok %full QR
if m > 1
s = diag(R);
elseif m == 1
s = R(1);
else
s = 0;
end
s = abs(s);
tol = norm(S,'fro') * eps(class(S));
r = sum(s > tol);
Z = Q(:,r+1:n);
catch %\#ok
% sparse QR is not available on old Matlab versions
err = lasterror(); %\#ok
if strcmp(err.identifier, 'MATLAB:maxlhs')
Z = null(full(S), varargin{:});
else
rethrow(err);
end
end
else % Full matrix
Z = null(S, varargin{:});
end
end

```

\section*{set_defaults()}
```

function [] = set_defaults()
set(0, ...
'defaultaxesfontsize', 18, ...
'defaultaxeslinewidth', 2.0, ...
'defaultlinelinewidth', 2.0, ...
'defaultpatchlinewidth', 2.0,...
'DefaultLineMarkerSize', 12.0);
end

```
```

