
Instantaneous Compacting Column

set_demo_defaults;

Here we consider the simplest non-trivial solution for the instantaneous compaction problem. Consider a

column of hight H with uniform porosity  that is closed at both the top and the bottom. 

 

For now we are just interested in the instantaneous solution for the flow problem. Choosing the compaction

length, , and the initial porosity, , as characteristic scales the dimensionless flow
problem simplifies to

1) ,

2) .

These equations are linear and second depends on the solution of the first. We are interested in a one-
dimensional solution so that we have to solve the following ODE's

1)     on  

2)     on  

where  is the dimensionles domain height. The boundary conditions are no flow for both the solid
and the melt:

   and     .

The only dimensionless governing parameter in this problem is the dimensionles domain height, .

Analytic solution

Equation 1 (mod. Helmholtz)
This equation is a non-homogeneous 2nd-order equation with constant coefficients. This can be solved

decomposing the solution into a homogeneous and a particular solution, . 

The form of the homogeneous solution is determined by substituting  into the associated homogeneous

equation. This shows that , so that the homogeneous solution takes the exponential form

The particular solution takes the fomr of a plynominal of the same degree as the r.h.s., so that
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.

Substituting into the equations and using the boundary conditions to determine the coefficients
in the homogeneous solution ( ) we have the dimensionless solution for the overpressure

head 

and the associated Darcy flux,  is given by

.

The dimensionless over pressure is given by 

.

c1 = @(H) (exp(-H)-1)./(exp(H)-exp(-H));
c2 = @(H) (exp(H)-1)./(exp(H)-exp(-H));
hD = @(z,H) z + c1(H).*exp(z) + c2(H).*exp(-z);
qD = @(z,H) -1 - c1(H).*exp(z) + c2(H).*exp(-z);
pD = @(z,H) c1(H).*exp(z) + c2(H).*exp(-z);

Equation 2 (Poisson)
Once the overpressure head is known we can substitute it into the r.h.s. of equation 2 to obtain

,

which can be solved by integrating twice. Otherwise can note that the derivatives of  and  are linked

though the relation  which comes from two-phase continuity. Substituting the gradient laws we have

which implies by integrating both sides once that , where c is an arbitrary constant we set to

zero. Therefore we have the following solutions for  and  are

,

.

uD = @(z,H) -z - c1(H).*exp(z) - c2(H).*exp(-z);
vD = @(z,H) 1 + c1(H).*exp(z) - c2(H).*exp(-z);
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Plot solution for different domain heights

Domain shorter than compaction length

HD = 0.1;
 
zD = linspace(0,HD,1e3);
figure('position',[10 10 1200 600])
subplot 131
plot(hD(zD,HD),zD), hold on
plot(uD(zD,HD)+HD,zD)
legend('h_D','u_D')
set(gca,'ytick',[0:.02:.1],'fontsize',20)
xlabel('h_D and u_D')
 
subplot 132
plot(qD(zD,HD),zD), hold on
plot(vD(zD,HD),zD)
legend('h_D','u_D')
set(gca,'ytick',[0:.02:.1],'fontsize',20)
xlabel('q_D and v_D')
 
subplot 133
plot(pD(zD,HD),zD)
set(gca,'ytick',[0:.02:.1],'fontsize',20)
xlabel('p_D')

Domain comparable to compaction length

HD = 1;
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zD = linspace(0,HD,1e3);
figure('position',[10 10 1200 600])
subplot 131
plot(hD(zD,HD),zD), hold on
plot(uD(zD,HD)+HD,zD)
legend('h_D','u_D')
set(gca,'ytick',[0:.2:1],'fontsize',20)
xlabel('h_D and u_D')
 
subplot 132
plot(qD(zD,HD),zD), hold on
plot(vD(zD,HD),zD)
legend('h_D','u_D')
set(gca,'ytick',[0:.2:1],'fontsize',20)
xlabel('q_D and v_D')
 
subplot 133
plot(pD(zD,HD),zD)
set(gca,'ytick',[0:.2:1],'fontsize',20)
xlabel('p_D')

Note that the magnitude of the dimensionless fluid flux and the solid velocity have increase by almost an
order of magnitude. The fluid overpressure is close to linear in this limit, the fluid is overpressured in the
lower half of the domain and underpressured in the top half of the domain. 

Domain larger than the compaction length

HD = 10;
Grid.xmin = 0; Grid.xmax = HD; Grid.Nx = 100;
Grid = build_grid(Grid);
[D,G,C,I,M] = build_ops(Grid);
 
zD = linspace(0,HD,1e3);
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figure('position',[10 10 1200 600])
subplot 131
plot(hD(zD,HD),zD), hold on
plot(uD(zD,HD)+HD,zD)
legend('h_D','u_D')
set(gca,'ytick',[0:2:10],'fontsize',20)
xlabel('h_D and u_D')
 
subplot 132
plot(qD(zD,HD),zD), hold on
plot(vD(zD,HD),zD)
legend('h_D','u_D')
set(gca,'ytick',[0:2:10],'fontsize',20)
xlabel('q_D and v_D')
 
subplot 133
plot(pD(zD,HD),zD)
set(gca,'ytick',[0:2:10],'fontsize',20)
xlabel('p_D')

Note thet formation of a boundary layer a few compaction length thick at the top and bottom of the domain.
In this boundary layer compaction/dilation accelerates/decelerates the fluid flux to/from a terminal vaue near
unity in the center of the domain where the overpressure is close to zero. 

Column much larger than compaction length

HD = 100;
Grid.xmin = 0; Grid.xmax = HD; Grid.Nx = 100;
Grid = build_grid(Grid);
[D,G,C,I,M] = build_ops(Grid);
 
zD = linspace(0,HD,1e3);
figure('position',[10 10 1200 600])
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subplot 131
plot(hD(zD,HD),zD), hold on
plot(uD(zD,HD)+HD,zD)
legend('h_D','u_D')
set(gca,'ytick',[0:20:100],'fontsize',20)
xlabel('h_D and u_D')
 
subplot 132
plot(qD(zD,HD),zD), hold on
plot(vD(zD,HD),zD)
legend('h_D','u_D')
set(gca,'ytick',[0:20:100],'fontsize',20)
xlabel('q_D and v_D')
 
subplot 133
plot(pD(zD,HD),zD)
set(gca,'ytick',[0:20:100],'fontsize',20)
xlabel('p_D')

The formation of the boundary layer is now even clearer. The compaction length is the characteristic scale
for these boundary layers and can be viewed as the correlation length of the pressure in the partially molten
medium. This is a fundamental difference between a rigid (or elastic) porous medium and ductile (viscous)
porous medium. In an rigid/elastic medium the stady state pressure changes communicate across the entire
medium (infinite correlation length), in a ductile/viscous medium steady-state pressure changes communicate
only a few compaction length.

Dependence on qD and vD on HD
The flow velocities increase with the domain size by asymptote to 1 in the limit of very large domains. To
illustrate this we can plot the maximum velocities in the center of the domain.

HD = logspace(-8,2,300);
figure('position',[10 10 1200 600])
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plot(HD,qD(HD/2,HD)), hold on
plot(HD,vD(HD/2,HD))
legend('h_D','u_D')
xlabel('H_D')
ylabel('q_D and v_D')
set(gca,'ytick',[-1:.2:1],'fontsize',20)

Note that the terminal velocity reached by the fluid and solid are not the same! Here we are plotting the solid
velocity and the fluid flux relative to it. The terminal velocities are such that the pressure gradient due to flow
makes up for the difference between hydrostatic (melt) and lithostatic (solid) pressure. 
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