
Numerical solution to the flow problem

set_demo_defaults;

Governing equations
Here we are solving the dimensionless instantaneous flow problem for constant porosity, given by

1)      on  ,

2)      on  .

where  is the dimensionles domain height. The boundary conditions are no flow for both the solid
and the melt:

   and     .

 

The fluid fux relative to the solid and the solid velocity are given by

 and .

The only dimensionless governing parameter in this problem is the dimensionles domain height, .

HD = 25;

Analytic solution
The analytic solution for the potentials and the overpressure are given by

,

,

.

The associated flux and velocity are given by

,

.
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zDa = linspace(0,HD,1e3);
% coefficients
c1 = @(H) (exp(-H)-1)./(exp(H)-exp(-H));
c2 = @(H) (exp(H)-1)./(exp(H)-exp(-H));
% potentials
hDa = @(z,H) z + c1(H).*exp(z) + c2(H).*exp(-z);
uDa = @(z,H) -z - c1(H).*exp(z) - c2(H).*exp(-z);
% overpressure
pDa = @(z,H) c1(H).*exp(z) + c2(H).*exp(-z);
% flux & velocity
qDa = @(z,H) -1 - c1(H).*exp(z) + c2(H).*exp(-z);
vDa = @(z,H) 1 + c1(H).*exp(z) - c2(H).*exp(-z);

Numerical solution
We use the same numerical grid and basic operators for both equations.

Grid.xmin = 0; Grid.xmax = HD; Grid.Nx = 100;
Grid = build_grid(Grid); 
zDc = Grid.xc; zDf = Grid.xf;
[D,G,C,I,M] = build_ops(Grid);

However, the system matrix, L, and the r.h.s. vector, fs, and quantities related to the boundary conditions
may be different. Therefore we will attach 'h' and 'u' to them to identify the appropriate equation

Solving the mod. Helmholtz equation for h
First we solve the mod. Helmholtz equation for the overpressure head. We have not solved this type of
equation before, but we can build the required the linear operators from the operators provided by build_grid
as follows

L_h = -D*G+I;
fs_h = zDc;

Due to the head formulation, the boundary condtions are natural

BC.h.dof_dir   = [];
BC.h.dof_f_dir = [];
BC.h.g         = [];
BC.h.dof_neu   = [];
BC.h.dof_f_neu = [];
BC.h.qb        = [];
 
[B_h,N_h,fn_h] = build_bnd(BC.h,Grid,I);

The numerical solution of the linear system is always the same

%% Solve boundary value problem
hD = solve_lbvp(L_h,fs_h+fn_h,B_h,BC.h.g,N_h);
pD = hD-zDc;
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Solve the Poisson problem for u
Once the overpressure head is known we can solve the Poisson equation for the velocity potential. This
equation has two interesting aspects:

1. Natural BC's leave an undetermined constant.
2. The compatability condition together with natural BC's requires that the operpressure sums to zero.

The compatability condition can be verified

sum(pD)

ans = -1.9273e-13

and is satisfied up to rounding error due to the discrete conservation of our numerical method. 

The undetermined constant can be dealt with by simply applying a Dirichlet BC and setting the head at
the bottom to zero. The natral boundary condition will will be imposed because the compatability condition
requires it! As such we will solve the problem with the following BC's

  and  .

Here se set the first cell center to the analytic solution.

L_u = -D*G;
fs_u = pD;

From a physical point of view the boundary conditions are no flow and hence natural. But the p

BC.u.dof_dir   = [Grid.dof_xmin];
BC.u.dof_f_dir = [Grid.dof_f_xmin];
BC.u.g         = uDa(zDc(BC.u.dof_dir),HD);
BC.u.dof_neu   = [];
BC.u.dof_f_neu = [];
BC.u.qb        = [];
 
[B_u,N_u,fn_u] = build_bnd(BC.u,Grid,I);

The numerical solution of the linear system is always the same

%% Solve boundary value problem
uD = solve_lbvp(L_u,fs_u+fn_u,B_u,BC.u.g,N_u);

Flux and velocity computation
Now that the potentials are known the relative fluid flux and the solid velocity can be computed. 

First we need to define the 'flux', i.e., the relation between the potential and the flux/velocity. Because the
porosity is constant, these expressions are identical.
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flux_h = @(h) -G*h;
flux_u = @(u) -G*u;

The residuals of the two equations differe because the linear operators differ.

res_h = @(h,cell) L_h(cell,:)*h - fs_h(cell); 
res_u = @(u,cell) L_u(cell,:)*u - fs_u(cell); 

Once the fluxes and the residuals are defined the qD and vD can be computed using comp_flux_gen.m.

qD = comp_flux_gen(flux_h,res_h,hD,Grid,BC.h);
vD = comp_flux_gen(flux_u,res_u,uD,Grid,BC.u);

Compare with the analytic solution

figure('position',[10 10 1200 600])
%% Plotting and post-processing
subplot 151
plot(hDa(zDa,HD),zDa,'linewidth',2), hold on
plot(hD,zDc,'--','linewidth',2)
xlabel('h_D','fontsize',22)
ylabel('z_D','fontsize',22)
legend('analytic','numerical','location','northwest')
set(gca,'fontsize',18)
 
subplot 152
plot(pDa(zDa,HD),zDa,'linewidth',2), hold on
plot(pD,zDc,'--','linewidth',2)
xlabel('p_D','fontsize',22)
ylabel('z_D','fontsize',22)
legend('analytic','numerical','location','northeast')
set(gca,'fontsize',18)
 
subplot 153
plot(uDa(zDa,HD),zDa,'linewidth',2), hold on
plot(uD,zDc,'--','linewidth',2)
xlabel('u_D','fontsize',22)
ylabel('z_D','fontsize',22)
legend('analytic','numerical','location','northeast')
set(gca,'fontsize',18)
 
subplot 154
plot(qDa(zDa,HD),zDa,'linewidth',2), hold on
plot(qD,zDf,'--','linewidth',2)
xlabel('q_D','fontsize',22)
ylabel('z_D','fontsize',22)
legend('analytic','numerical','location','northeast')
set(gca,'fontsize',18)
 
subplot 155
plot(vDa(zDa,HD),zDa,'linewidth',2), hold on
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plot(vD,zDf,'--','linewidth',2)
xlabel('v_D','fontsize',22)
ylabel('z_D','fontsize',22)
legend('analytic','numerical','location','northeast')
set(gca,'fontsize',18)
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