
Conservative Finite Differences (CFD)

clc, close all, clear
set_demo_defaults

Motivating example: Flow around an injection well
Consider incompressible flow around a well with radius, , injecting fluid at a constant rate, , into an
aquifer with hydraulic conductivity K  (assumed to be isotropic and constant) and thickness Hin a cylindrical
domain with radius, R. The incompressible flow equation in coordinate-independent notation is given by

where  is a source sink term assumed to be zero here. Instead we write the PDE in cylindrical coordinates,
assuming circumfrential symetry, and represent the well as a boundary condition. The divergence and
gradient in radial direction are given by

 and 

so that we have the following problem

 for  

with the following flux boundary condition at the well

 

where  is the area of the well-aquifer interface. This gives a condition on the derivative of h at the
well

.

At the far-field boundary we assume to have a constant head . The parameter values below are
only for illustrative purposes.

param.rw = .1;   % well radius
param.r0 = 100;  % domain radius
param.h0 = 1;    % far-field head
param.Qw = 1;    % well flow rate
param.H = 1;     % aquifer thickness
param.K = 1;     % hydraulic conductivity
param.Aw = 2*pi*param.rw*param.H; % wellbore area
rlim = [param.rw,param.r0];
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Analytic solution
The analytic solution for this problem is obtained by integrating twice and is given by

,

,

,

The particular solution for the parameter values given above is shown in the first figure.

[xa,ha,qa,Qa] = AnalyticSolution(param);
 
subplot 131
h = plot(xa,ha(xa),'-');
pbaspect([1 .8 1])
xlabel 'r', ylabel 'h'
subplot 132
plot(xa,qa(xa),'-')
pbaspect([1 .8 1])
xlabel 'r', ylabel 'q'
subplot 133
plot(xa,Qa(xa),'-')
pbaspect([1 .8 1])
xlabel 'r', ylabel 'Q'
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This is a challenging solution due to the strong boundary layer at the well where the gradient of h becomes
very steep.

Standard finite difference approximation

Above is a standard finite difference grid with node spacing  and node index i. To use standard finite
difference approximations for the first and second derivative we first need to expand the divergence

Then we can use the differentiation matrix, , to approximate the PDE as follows

where  is a diagonal matrix containing the position of the nodes and  is the discrete solution vector. This
numerical solution is shown below.
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param.Nx = 30; param.BC = 'ND';
[xFD,hFD,qFD,QFD] = FiniteDifferenceSolution(param,ha);
subplot 131
h = plot(xa,ha(xa),'-',xFD,hFD,'--'); hold on
c = get(h,'Color');
plot(rlim,ha(rlim),'o','markerfacecolor','w','markeredgecolor',c{1})
pbaspect([1 .8 1])
xlabel 'r', ylabel 'h'
legend('Analytic','FD')
 
subplot 132
title 'Standard finite differences'
plot(xa,qa(xa),'-',xFD,qFD,'--'), hold on
plot(rlim,qa(rlim),'o','markerfacecolor','w','markeredgecolor',c{1})
pbaspect([1 .8 1])
xlabel 'r', ylabel 'q'
 
subplot 133
plot(xa,Qa(xa),'-',xFD,QFD,'--'), hold on
plot(rlim,Qa(rlim),'o','markerfacecolor','w','markeredgecolor',c{1})
pbaspect([1 .8 1])
xlabel 'r', ylabel 'Q'

Observations:

1. Standard finite differences lead to surprisingly large errors on the head, because we need to resolve
the thin boundary layer near the well.
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2. The flow rate, Q, is not constant! The mass of pore fluid is not conserved. This will lead to wrong
transport speeds for any solutes carried by fluid. 

Of course the colution will converge if the grid is refined sufficiently and mass balance errors will asymptote
to zero. However, in practical simulations (2D or 3D) it is typically not possible to refine the grid sufficiently
obtain acceptable errors.

Finite differencing in conservation form
In particular the coupling between transport of solutes or energy and fluid flow required that the numerical
solution maintains discrete conservation. We loose the mass conservation in the standard finite difference
discretization because we expand the divergence using the product rule. We need to discretize the
equation with the divergence intact. 

It helps to rewrite the second-order equation as a 'div-grad system' of two first-order equations for the
head, h, and the radial component of the flux, , as

1.
 

2.

We discretize these equations on a co-located grid, where both  and  are approximated at
the same nodes.

So we approximate the two first-order equations as

1.
,

2.
.

D*[R*D*h]

We can eliminate  by substituting 2 into 1 to obtain

this stencil involves ,  and  and leads to a decoupling of the even and odd nodes
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param.Nx = 30;
[x,h,q,Q,L,L_e_o] = FD_collocated(param,ha);
figure
plot(xa,ha(xa),'-'); hold on
plot(x,h)
xlabel 'r', ylabel 'h'
pbaspect([1 .8 1])
legend('Analytic','FD: 1st-order system')

This decoupling leads to oscillations between even and odd nodes. 

subplot 121
spy(L)
title 'Standard ordering'
subplot 122
spy(L_e_o)
title 'Even-odd ordering'
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Auxillary functions

function [xa,ha,qa,Qa] = AnalyticSolution(param)
rw = param.rw; 
r0 = param.r0;
h0 = param.h0;
Qw = param.Qw;
H = param.H;
K = param.K;
 
% Analytic solution
xa = linspace(rw,r0,1e3);
ha = @(r) h0 - Qw/2/pi/H/K * log(r/r0);
qa = @(r) Qw/2/pi/H./r;
Qa = @(r) Qw+0*r;
end

 

%% Finite difference solution
function [xFD,hFD,qFD,QFD] = FiniteDifferenceSolution(param,ha)
rw = param.rw; 
r0 = param.r0;
h0 = param.h0;
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Qw = param.Qw;
H = param.H;
K = param.K;
Nx = param.Nx;
BC = param.BC;
Aw = param.Aw;
 
x = linspace(rw,r0,Nx)'; dx = x(2)-x(1);
e = ones(Nx,1);
D = spdiags([-e e]/2/dx,[-1 1],Nx,Nx); 
D(1,1) = -3/2/dx; D(1,2) = 4/2/dx; D(1,3) = -1/2/dx; 
D(Nx,Nx) = 3/2/dx; D(Nx,Nx-1) = -4/2/dx; D(Nx,Nx-2) = 1/2/dx; 
 
D2 = spdiags([e -2*e e]/dx^2,[-1 0 1],Nx,Nx); 
R = spdiags(x,0,Nx,Nx); I = speye(Nx,Nx);
L = -K*(R*D2+D); fs = zeros(Nx,1); 
 
if strcmp(BC,'ND')
    L(1,:) = D(1,:); fs(1) = -Qw/Aw/K;
    B = I(Nx,:); N = I; N(:,Nx) = [];
    g = ha(r0);
elseif strcmp(BC,'DD') || strcmp(BC,'DD2')
    B = I([1;Nx],:); N = I; N(:,[1;Nx]) = [];
    g = [ha(rw);ha(r0)];
end
 
hFD = solve_lbvp(L,fs,B,g,N);
qFD = -K*D*hFD;
QFD = 2*pi*H*x.*qFD;
xFD = x;
end

 

function [x,h,q,Q,L,L_e_o] = FD_collocated(param,ha)
rw = param.rw; 
r0 = param.r0;
h0 = param.h0;
Qw = param.Qw;
H = param.H;
K = param.K;
Nx = param.Nx;
%BC = param.BC;
%Aw = param.Aw;
 
x = linspace(rw,r0,Nx)'; dx = x(2)-x(1);
e = ones(Nx,1);
D = full(spdiags([-e e]/2/dx,[-1 1],Nx,Nx));
D(1,1) = -1/dx; D(1,2) = 1/dx;
D(Nx,Nx-1) = -1/dx; D(Nx,Nx) = 1/dx;
% D(1,N) = -1/2; D(N,1) = 1/2;
% D = D/dx;
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r = spdiags(x,0,Nx,Nx);
L = -D*r*D;
 
B = zeros(2,Nx); B(1,1) = 1; B(2,Nx) = 1;
I = eye(Nx); N = I(:,2:Nx-1);
g = [ha(rw); ha(r0)];
 
odd = [1:2:Nx]'; even = [2:2:Nx]';
P = I([odd;even],:);
L_e_o = P*L*P';
% subplot 121
% spy(L)
% title 'Standard ordering'
% subplot 122
% spy(P*L*P')
% title 'Even-odd ordering'
 
 
h = solve_lbvp(L,0,B,g,N);
q = -D*h;
Q = x.*q;
 
end
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