
Introduction to finite differences

clear, clc
set_defaults()

One-sided approximation

In calculus the derivative of a function at is defined by the following limit

.

The finite difference approximation, , of simply simply takes a finite , corresponding to the grid
spacing

where is the order of the error between and . As we increase the number of grid points, becomes
smaller and the numerical approximation improves. Consider the example below.

f = @(x) sin(2*pi*x);
dfdx = @(x) 2*pi*cos(2*pi*x);

x0 = .4;
dx_fd = logspace(log10(3.162e-4),log10(3.162e-1),7);
df_onesided = (f(x0+dx_fd) - f(x0))./dx_fd;

close all
subplot 121
x = linspace(0,1,1e2);
plot(x,f(x),'k-'), hold on
plot(x0,f(x0),'o','markerfacecolor','w')
xlabel 'x', ylabel 'f(x)'
pbaspect([1 1 1])

for i = 1:length(dx_fd)
 x0plus = x0+dx_fd(i);
 xx = [x0 x0plus];
 subplot 121
 plot(xx,f(xx),'o-','markerfacecolor','w','markersize',10)
end

subplot 122
error_onesided = abs(df_onesided - dfdx(x0))/abs(dfdx(x0));
loglog(dx_fd,error_onesided,'o','markerfacecolor','w','markersize',10), hold on
semilogy(dx_fd,dx_fd*1e0,'k--')
pbaspect([1 1 1])
xlabel '\Delta x', ylabel 'error'

1

legend('error','O(\Delta x)','location','northwest')

The error decreases linearly as declines. This one-sided difference is a first order approximation of the
derivative. In the continouous defination of the derivative we don't care about the order of approximation,
because in the limit of the approximation becomes exact.

Central difference approximation
In a numerical simulation will always be finite and we will get better results if our approximation of the
derivative is more accurate. It can be shown that the following central difference aproximation is second
order accurate

It is simple to verify this computationally

df_central = (f(x0+dx_fd) - f(x0-dx_fd))./(2*dx_fd);
error_central = abs(df_central - dfdx(x0))/abs(dfdx(x0));
figure
loglog(dx_fd,error_onesided,'o','markerfacecolor','w','markersize',10), hold on
loglog(dx_fd,error_central,'o','markerfacecolor','w','markersize',10)
semilogy(dx_fd,dx_fd*1e0,'k--')
semilogy(dx_fd,dx_fd.^(2)*1e0,'k--')

2

xlabel '\Delta x', ylabel 'error'
legend('one-sided','central','location','southeast')

The modeling of heat flow typically utilizes the central difference approximation, which is second-order
accurate in space. Second-order accuracy is sufficient for most applications.

Differentiation matrices
A linear differential operator takes a function and returns a different functions (unless it is the identity

operator). For example, the derivative operator . The discrete equivalent of a function is a vector, ,

that samples the function at the discrete points . A discrete linear operator therefore takes a vector

and returns a different vector, , and can therefore be represented by a matrix, . In the case of the
derivative operator, we speak of a differentiation matrix.

In a straight finite difference implmentation we use central differences to construct this differentiation matrix.
The n-th row of this matrix applies the central differentce stencil to the n-th element of the vector .

N = 50;
x = linspace(0,3,N)'; dx = x(2)-x(1);
e = ones(N,1);
D = spdiags([-e e]/(2*dx),[-1 1],N,N); % Central difference in center of domain

D(1,[1 2 3]) = [-3 4 -1]/(2*dx); % One-sided differences at left end
D(N,[N-2 N-1 N]) = [1 -4 3]/(2*dx); % One-sided differences at right end

3

figure
spy(D)
title 'Sparsity of differentiation matrix'

Sparse banded matrices
The concept of a sparse matrix representation is crucial for efficient numerical implementation of PDE-base
numerical models. The function spy() shows the "sparsity pattern" of our differentiation matrix, i.e., all non-
zero entries are shown as a dot. Clearly the differentiation matrix is mostly zeros. This is because the central
difference approximation only involves the two neighboring grid-points.

The idea of sparse matrix representation is to avoid storing all th zeros, otherwise computations would
quickly become limited by memory. For a sparse matrix we simply store the three numbers (i,j,value) for
the non-zero elemnts. You never actually have to deal with this Matlab takes care of this, but you must use
specific sparse matric functions to create your matrices.

Differentiation matrices are typically banced, i.e., they have a few diagonals that contain most of the non-
zero entries. In our example there are two non-zero diagonal, except for the first and the last row where one-
sided approximations are required for points on the boundary. Sparse diagonal matrices are created with the
function spdiags(), this function will become good friend of yours this semester - read the documentation.

Notice, there is also a function diag() which creates full diagonal matrices, i.e., banded matrices where every
elemnt is stored. In Matlab you often have a full and a sparse version of a function, the spars version is
typically indicated by appending 'sp' to the function name. Never use diag() to create you matrices for this
class. In fact, if you ever run out of memory in homworks for this class, you likely forgot to make a matrix
sparse!

4

https://www.mathworks.com/help/matlab/ref/spy.html
https://www.mathworks.com/help/matlab/sparse-matrices.html
https://www.mathworks.com/help/matlab/ref/spdiags.html
https://www.mathworks.com/help/matlab/ref/diag.html

Now we test if multilpying by some vector returns its derivative and if multiplying it twice with returns
the second derivative.

f = @(x) exp(cos(2*pi*x));
dfdx = @(x) -exp(cos(2*pi*x)).*sin(2*pi*x)*2*pi;
d2fdx2 = @(x) -2*pi^2*exp(cos(2*pi*x)).*(2*cos(2*pi*x)+cos(4*pi*x)-1);

xa = linspace(0,3,3e2);
figure(2)
subplot 311
plot(xa,f(xa),'r',x,f(x),'bo','markerfacecolor','w','markersize',6)
xlabel 'x', ylabel 'f'
legend('analytical','numerical')

subplot 312
plot(xa,dfdx(xa),'r',x,D*f(x),'bo','markerfacecolor','w','markersize',6)
xlabel 'x', ylabel 'df/dx'

subplot 313
plot(xa,d2fdx2(xa),'r',x,D*D*f(x),'bo','markerfacecolor','w','markersize',6)
xlabel 'x', ylabel 'd^2f/dx^2'
ylim([-100 50])

Relation to standard 2-nd derivative approximation

5

The standard 2-nd order discretization of the second derivative is given by

On a grid the appliximation for the second derivative at node i is therefore

This stencil uses only the neighboring nodes to approcimate the derivative. We denote the coresponding
differentiation matrix D2.

If we compute the second derivative by applying the differentiation matrix twice

ddf = D*D*f

we get a similar but wider stencil

Hence D*D≠D2, but both are second order accurate. The tighter stencil of D2 is a better choice because the
wide stencil of D*D can introduce problems.

Convergence with grid refinement
To check the convergence of the discrete operators compute the error between and

D*f and and D^2*f as the number grid points increases.

N = round(logspace(1,6,10));
for i = 1:length(N)
 [D,xc] = build_diff_matrix(N(i));
 error_dfdx(i) = norm(dfdx(xc)-D*f(xc))/norm(dfdx(xc));
 error_d2fdx2(i) = norm(d2fdx2(xc)-D^2*f(xc))/norm(d2fdx2(xc));
 dxc(i) = xc(2)-xc(1);
end

figure
loglog(dxc,error_dfdx,'ro','markerfacecolor','w'), hold on
loglog(dxc,error_d2fdx2,'bo','markerfacecolor','w')
semilogy(dxc,dxc.^(2)*1e1,'k--')
xlabel '\Delta x', ylabel 'error'
ylim([1e-10 1])
legend('df/dx','d^2f/dx^2','O(\Delta x^2)','location','southeast')
pbaspect([1 .8 1])

6

The graph shows that both first and second derivatives converge with 2-nd order accuracy. In general, the
error increases with the order of the derivative, because error from the first application of D is compounded.
The increase of the error in the second derivative at very small Dx is due to rounding error. In practical
simulation, this won't be a problem as grids are generally too coarse rather than too fine.

Auxillary functions

function [] = set_defaults()
 set(0, ...
 'defaultaxesfontsize', 18, ...
 'defaultaxeslinewidth', 2.0, ...
 'defaultlinelinewidth', 2.0, ...
 'defaultpatchlinewidth', 2.0,...
 'DefaultLineMarkerSize', 12.0);
end

Functions that builds the differentiation matrix

function [D,x] = build_diff_matrix(N)
 x = linspace(0,3,N)'; dx = x(2)-x(1);
 e = ones(N,1);
 D = spdiags([-e e]/(2*dx),[-1 1],N,N); % Central difference in center of domain

 D(1,[1 2 3]) = [-3 4 -1]/(2*dx); % One-sided differences at left end
 D(N,[N-2 N-1 N]) = [1 -4 3]/(2*dx); % One-sided differences at right end

7

end

8

