
Steady water flow across layered media

clear
set_demo_defaults()

It is instructive to consider steady groundwater flow across layered materials, because geological
meterials are layerd at many scales. In the two limiting cases the flow is either parallel to the layering
or perpendicular to the layering.

Consider a material with Nlayers, where the the n-th layer has hydraulic conductivity, , and width or

length,  or , depending on flow direction. The total width or length of the material are therefore 

 and  .

Effective conductivities
In many materials the layering is too small scale, relative to the domain of interest, to represent it directly in
the numerical discretization. Hence it is important to be able to represent the layering with effective upscaled
hydraulic conductivities. As we will see below, these effective conductivities will depend on direction, relative
to the layering.

 

Flow along the layers
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We are looking for an

effective thermal conductivity, , so that the total flow through the medium, , is identical

to the total flow obtained for the layered medium with the same head gradient, . In the layered
medium the total flow rate is the sum of the flow rates in each layer, because the the flow is parallel to the

layers: , where  is the flux in the n-th layer. Equating these two expressions we obtain

, so that the effective flux is given by . Hence, the effective hydraulic

conductivity for flow along layers is the fractional width weighted arithmetic mean of the conductivities of the
individual layers.

 

Flow across the layers

Now let's develop an analogous expression the effective hydraulic conductivity, , for flow across the

layers. In this case, the flux across each layer must be identical, , but the head gradient

across each layer , will be different. The total head drop and the total medium length are then given by

, and . 

Substituing the first into the expression for the flux in terms of the effective conductivity we get
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now we use the expression for the flux across each layer to eliminate the head drops and obtain

,

where qcancels and we re-arrange to obtain the following expression the effective hydraulic conductivity
across layers:

This is called the harmonic average, and again it is weighted by the length fraction, , of each layer.

General Power-law average
These two averages are special cases of the general power-paw average, given by

where the arithmetic average is recovered for p=1 and the harmonic average for p=-1.  

(Note to self - still need to work out the weighting!)

Numerical examples
Note: This requires 2D operators, which you don't have yet.

kappa_vec = [30;100;30;75;350; 5;120];
dist_vec =  [10; 35; 5;15;  5;20; 10];
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 100;
Grid.ymin = 0; Grid.ymax = 1; Grid.Ny = 100;
Grid = build_grid(Grid); 
[D,G,C,I,M] = build_ops(Grid);
L = @(Kd) -D*Kd*G; fs = zeros(Grid.N,1);
BC.dof_dir = [Grid.dof_xmin;Grid.dof_xmax];
BC.dof_f_dir = [Grid.dof_f_xmin;Grid.dof_f_xmax];
BC.g = [ones(Grid.Ny,1);zeros(Grid.Ny,1)];
BC.dof_neu = []; BC.dof_f_neu = []; BC.qb = [];
[B,N,fn] = build_bnd(BC,Grid,I);

First let's look at flow along the layers

[Kd_x,K_x] = make_layered_medium(kappa_vec,dist_vec,M,Grid,'x-dir');
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u = solve_lbvp(L(Kd_x),fs+fn,B,BC.g,N);
q = comp_flux(D,Kd_x,G,u,fs,Grid,BC);
 
figure('position',[10 10 1200 600])
subplot 131
[Xc,Yc] = meshgrid(Grid.xc,Grid.yc);
surf(Xc,Yc,K_x), shading interp, view(2), colorbar
xlabel 'x', ylabel 'y', title 'K'
axis square tight
 
subplot 132
[Xc,Yc] = meshgrid(Grid.xc,Grid.yc);
surf(Xc,Yc,reshape(u,Grid.Ny,Grid.Nx)), shading interp, view(2), colorbar
xlabel 'x', ylabel 'y', title 'h'
axis square tight
 
subplot 133
[Xx,Yx] = meshgrid(Grid.xf,Grid.yc);
surf(Xx,Yx,reshape(q(1:Grid.Nfx),Grid.Ny,Grid.Nx+1)), shading interp, view(2), colorbar
xlabel 'x', ylabel 'y', title '|q|'
axis square tight

Now compare the flow computed numerically on the layered medium with the effective expression

Qnum = q(Grid.dof_f_xmin)'*Grid.A(Grid.dof_f_xmin)

Qnum = 82.0707

kappa_eff = (dist_vec/100)'*kappa_vec;
Qeff = kappa_eff*1/(1-Grid.dx)
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Qeff = 82.0707

Then look at flow across the layers

[Kd_y,K_y] = make_layered_medium(kappa_vec,dist_vec,M,Grid,'y-dir');
u = solve_lbvp(L(Kd_y),fs+fn,B,BC.g,N);
q = comp_flux(D,Kd_y,G,u,fs,Grid,BC);
 
figure('position',[10 10 1200 600])
subplot 131
[Xc,Yc] = meshgrid(Grid.xc,Grid.yc);
surf(Xc,Yc,K_y), shading interp, view(2), colorbar
xlabel 'x', ylabel 'y', title 'K'
axis square tight
 
subplot 132
[Xc,Yc] = meshgrid(Grid.xc,Grid.yc);
surf(Xc,Yc,reshape(u,Grid.Ny,Grid.Nx)), shading interp, view(2), colorbar
xlabel 'x', ylabel 'y', title 'h'
axis square tight
 
subplot 133
[Xx,Yx] = meshgrid(Grid.xf,Grid.yc);
surf(Xx,Yx,reshape(q(1:Grid.Nfx),Grid.Ny,Grid.Nx+1)), shading interp, view(2), colorbar
caxis([0 20])
xlabel 'x', ylabel 'y', title '|q|'
axis square tight
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Now compare the flux computed directly on the layers medium with the effective expression

qnum = q(1)

qnum = 19.5054

kappa_eff = 100./sum((dist_vec./kappa_vec));
qeff = kappa_eff*1/(1-Grid.dx)

qeff = 19.6227

Small differences between qnum and qeff arelikely due to the fact that the boundary conditions are imposed
at the center of the boundary cells.

Auxillary functions

function [Kd,K] = make_layered_medium(kappa,dist,M,Grid,orientation)
if length(kappa) ~=length(dist); error('kappa and dist not same length\n'); end
K = ones(Grid.Ny,Grid.Nx); % matrix
if strcmp(orientation,'x-dir')
    K([1:dist(1)],:) = kappa(1);
    for i=2:length(kappa)
        K(sum(dist(1:i-1))+1:sum(dist(1:i)),:) = kappa(i);
    end
else
    K(:,[1:dist(1)]) = kappa(1);
    for i=2:length(kappa)
        K(:,sum(dist(1:i-1))+1:sum(dist(1:i))) = kappa(i);
    end
end
Kd = comp_mean(K(:),M,-1,Grid,1); % needs K as column vector
% Kd = comp_mean(K,-1,1,Grid);
end
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