
Forward testing of differentiation matrices
Note: You will only be able to run this once you have written the functions bulid_grid() and build_ops()!

The discrete operators D and G are differentiation matrices. If f is a vector that is the discrete representation of a

function , then G*f returns a discrete approximation of the derivative .

For the one-dimensional examples below the discrete operators can be generated as follows:

clear, clc
set_demo_defaults
Grid.xmin = 0; Grid.xmax = 3; Grid.Nx = 10;
Grid = build_grid(Grid);
[D,G,C,I,M] = build_ops(Grid); L = D*G;

Here Grid is a structure that contains all information about the grid and build_grid() is a function that generates
all the necessary information. The function build_ops() then generates the discrete operators for the grid. The
matrix L corresponds to the Laplacian operator and hence to a decond derivative matrix in 1D.

The othe matrices returned by build_ops() are:

C = discrete curl (does not exist in 1D)

I = identity

M = mean matrix - computes arithmetic mean of cell centered values on the cell faces

Visualizing the fill pattern of the operators
We can viualize the sparity pattern of our matrices with the spy() function.

figure(1)
subplot 131
spy(D)
title 'Divergence'

subplot 132
spy(G)
title 'Gradient'

subplot 133
spy(L)
title 'Laplacian'

1

https://www.mathworks.com/help/matlab/ref/spy.html

Not the Laplacian has the standard tri-diagonal structure expected for the 1D discretization of the second derivative.

Testing the discrete operators
We would like to setablish that our discrete operators are correct, before moving on in our implementation. The obvious
idea is to solve a particular boundary value problem (BVP) with a known analytic solution and to compare it with the
numerical solution. However, this is not the optimal testing strategy, because the full numerical solution of a boundary
value problem (BVP) requires both the discrete operators and the implementation of the boundary conditions. The BVP
solution may be wrong, even is the diecrete operatores are correct, becuse the error might be in the implementation of
boundary condition.

To test only the correctness of the discrete operators, we can use the knowledge that they simply differentiate a
function. The only caveat is that the derivative is not evaluated at a the same location, due to the staggered grid!

To test the operators we need a finer grid.

Grid.xmin = 0; Grid.xmax = 3; Grid.Nx = 30;
Grid = build_grid(Grid);
[D,G,C,I,M] = build_ops(Grid); L = D*G;

Differentiating a function that statisfies the natural BC's
Consider the function on the domain , which statifies the natural boundary conditions,

i.e., at the boundaries. These are the boundary conditions that are build into the discrete gradient G.

xa = linspace(Grid.xmin,Grid.xmax,3e2);

2

f = @(x) exp(cos(2*pi*x));
dfdx = @(x) -exp(cos(2*pi*x)).*sin(2*pi*x)*2*pi;
d2fdx2 = @(x) -2*pi^2*exp(cos(2*pi*x)).*(2*cos(2*pi*x)+cos(4*pi*x)-1);

figure(2)
subplot 311
plot(xa,f(xa),'r',Grid.xc,f(Grid.xc),'bo','markerfacecolor','w','markersize',6)
xlabel 'x'
ylabel 'f'
legend('analytical','numerical')

subplot 312
plot(xa,dfdx(xa),'r',Grid.xf,G*f(Grid.xc),'bo','markerfacecolor','w','markersize',6)
xlabel 'x'
ylabel 'df/dx'
legend('analytical','numerical')

subplot 313
plot(xa,d2fdx2(xa),'r',Grid.xc,L*f(Grid.xc),'bo','markerfacecolor','w','markersize',6)
xlabel 'x'
ylabel 'd^2f/dx^2'
legend('analytical','numerical')

The figure shows that discrete derivatives approximat the analytic derivatives well. Note that the two derivatives are
evaluated at different locations:

1. First derivative is evaluated at cell faces.
2. Second derivative is evaluated at cell centers.

3

Differentiation a function that does NOT satisfy the natural BC's
Consider the function , which does not satify the natural boundary conditions, i.e., the homogeneous
Neumann boundary conditions of the discrete gradient operator G.

g = @(x) exp(sin(2*pi*x));
dgdx = @(x) exp(sin(2*pi*x)).*cos(2*pi*x)*2*pi;
d2gdx2 = @(x) 2*pi^2*exp(sin(2*pi*x)).*(-2*sin(2*pi*x)+cos(4*pi*x)+1);

figure(3)
subplot 311
plot(xa,g(xa),'r',Grid.xc,g(Grid.xc),'bo','markerfacecolor','w','markersize',6)
xlabel 'x'
ylabel 'g'
legend('analytical','numerical')

subplot 312
plot(xa,dgdx(xa),'r',Grid.xf,G*g(Grid.xc),'bo','markerfacecolor','w','markersize',6)
xlabel 'x'
ylabel 'dg/dx'
legend('analytical','numerical')

subplot 313
plot(xa,d2gdx2(xa),'r',Grid.xc,L*g(Grid.xc),'bo','markerfacecolor','w','markersize',6)
xlabel 'x'
ylabel 'd^2g/dx^2'
legend('analytical','numerical')

4

The figure shows that the derivatives are still well approximated in the interior of the domain. The error on the
boundaries is large and does not reduce with increasing refinement of the grid. We will see later that the implementation
of the boundary condition takes care of this problem.

Convergence with refinement
To check the convergence of the discrete operators compute the error

between and G*f and and D*G*f as the number grid points increases.

Nx = round(logspace(1,6,10));
error_grad = zeros(size(Nx)); error_lap = zeros(size(Nx));

for i = 1:length(Nx)
 Grid.Nx = Nx(i); Grid = build_grid(Grid);
 clear D G I
 pause(1e-3)
 tic;
 [D,G,C,I,M] = build_ops(Grid);
 time(i) = toc;
 L = D*G;
 error_grad(i) = norm(dfdx(Grid.xf)-G*f(Grid.xc))/norm(dfdx(Grid.xf));
 error_lap(i) = norm(d2fdx2(Grid.xc)-D*G*f(Grid.xc))/norm(d2fdx2(Grid.xc));
end

figure(4)
clf
subplot 121
loglog(Nx,error_grad,'ro','markerfacecolor','w'), hold on
loglog(Nx,error_lap,'bo','markerfacecolor','w')
semilogy(Nx,Nx.^(-2)*1e2,'k--')
xlabel 'Nx', ylabel 'error'
xlim([Nx(1)-1e-3 Nx(end)+1e-3])
legend('gradient','Laplacian')
pbaspect([1 .8 1])
subplot 122
loglog(Nx,time,'bo','markerfacecolor','w'), hold on
semilogy(Nx,min(time)*Nx/100,'k--')
xlabel 'Nx', ylabel 'time [s]'
pbaspect([1 .8 1])

5

The graph on the left shows the decline of the numerical error as a function of increasing grid refinement. The dashed
line indicates the quadratic slope expected for that is expected for the central difference, which is second order
accurate. Note, as the grid gets very fine (N > 500,000) the numerical rounding error takes over.

The graph on the right shows the time required to compute the discrete operators as the grid size increases
with a dashed line indicating linear increase. The discrete opertors can be assemble very efficiently using
the spdiags() function.

Auxillary functions

function [] = set_defaults()
 set(0, ...
 'defaultaxesfontsize', 18, ...
 'defaultaxeslinewidth', 2.0, ...
 'defaultlinelinewidth', 2.0, ...
 'defaultpatchlinewidth', 2.0,...
 'DefaultLineMarkerSize', 12.0);
end

6

https://www.mathworks.com/help/matlab/ref/spdiags.html

