
Conductive cooling of a finite domain

clear, close all, clc
set_demo_defaults()

Dimensional Problem

To determine the cooling timescale of a finite domain of length, L, with initial temperature, , and boundary

temperature, , we need to solve the  following Initial and Boundary Value Problem (IBVP)

PDE:       on   and .

BC's:         and  .

IC:           on  

Here we assume that  and κ are constant so that the problem is linear.  Note that we assume

that  so that .

This problem has six paramters: L, , ρ, κ,  and 

To determine how many independent paramters this problem has we non-dimensionalize the
variables, T, x and t by choosing the following characteristic scales.

,  and .

Here we have chosen external scales imposed by the domain size and boundary for T and x. There is no
external scale for t and here we just use a generic characteristic time, , that will be determined by the
equation itself.

 

Dimensionless Problem

Substituting the generic scales we obtain the following problem

PDE:       on   and .

BC's:         and  .

IC:           on  

where the dimensionless group  is the ratio of  and the internal diffusive

timescale , where  is the thermal diffusivity. To simplify the problem we choose
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the internal diffusive timescale as characteristic scale . So that the final dimensionless problem is
parameter free and here written in one dimension as

PDE:       on   and .

BC's:         and  .

IC:           on  

 

Analytic solution

The analytic solution is obtained by separation of variables,  and the dimensionless
solution is given by 

The corresponding dimensional solution is obtained by substituting the definitions of the dimensionles
variables and given by

For simplicity we work with the dimensionless solution below.

Nt = 20; Nx = 1e3; Nn = 1e2;
 
tvec = logspace(-4,2,Nt);
figure
map = colormap(parula(Nt+1));
plot([0 1],[1 1],'color',map(1,:)), hold on
for i = 1:Nt
    [xd,Td] = analytic_soln_finite(tvec(i),Nx,Nn);
    plot(xd,Td,'color',map(i+1,:))
end
title 'Analytical solution'
xlabel 'x''', ylabel 'T'''
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drawnow

Convergence of the series

The analytic solution is a sum of sin functions of increasing wave number that are superposed to generate
the solution

Nx = 1e3; Nn = 8;
 
figure
map = colormap(jet(Nn));
for i = 1:Nn
    [xd,Td] = analytic_soln_finite(.01,Nx,i); hold on
    plot(xd,Td,'color',map(i,:))
end
legend('n=1','n=2','n=3','n=4','n=5','n=6','n=7','n=8','location','southeast')
xlabel 'x''', ylabel 'T'''
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drawnow

Temperature decay

The contribution of each eigenfunction/mode decays proportional to its eigenvalue. The higher order modes
decay quickly and at late time the solution is well approximated by the first mode. 

The figure show the decay of the maximum temperature from the full solution and the approximation

Nt = 200; Nx = 2;
tvec = linspace(0,1,Nt);
Td_max = zeros(Nt,1); Td_max_approx = Td_max;
figure
for i = 1:Nt
    [xd,Td] = analytic_soln_finite(tvec(i),Nx,1e3);
    Td_max(i) = Td(2);
    [xd,Td] = analytic_soln_finite(tvec(i),Nx,1);
    Td_max_approx(i) = Td(2);
end
semilogy(tvec,Td_max,'r-'), hold on
semilogy(tvec,Td_max_approx,'k:')
 
ylabel 'max(T'')', xlabel 't'''
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legend('full soln','1st term')

drawnow

Heat flow (to be continued)

The heat flow at the boundary is given by Fourier's law in its dimensionless form

or in dimensionless form 

if we introduce the caracteristic scale,  for the heat flow. Differentiating the analytic solution we

have

 

 

Numerical solution
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Below is the code to solve the dimensionless problem numerically

tmax = 1;
Nt = 50;
theta = 0;
 
% Grid and operators
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 30;
Grid = build_grid(Grid);
[D,G,~,I,M] = build_ops(Grid); 
L = -D*G; fs = zeros(Grid.Nx,1);
IM = @(theta,dt) I + (1-theta)*dt*L;
EX = @(theta,dt) I - theta*dt*L;
 
% Boundary conditions
BC.dof_dir   = Grid.dof_xmin;
BC.dof_f_dir = Grid.dof_f_xmin;
BC.g         = 0;
BC.dof_neu   = []; 
BC.dof_f_neu = [];
BC.qb        = [];
[B,N,fn] = build_bnd(BC,Grid,I);
 
% Initial condition
u = ones(Grid.Nx,1);
figure
map = colormap(parula(Nt+1));
plot(Grid.xc,u,'color',map(1,:)), hold on
 
% Timestepping
dt_max = Grid.dx^2/2;
dt = tmax/Nt;
time = zeros(Nt+1,1);
for n = 1:Nt
    time(n+1) = time(n) + dt;
    u = solve_lbvp(IM(theta,dt),dt*fs+EX(theta,dt)*u,B,BC.g,N);
    plot(Grid.xc,u,'-','color',map(n+1,:)), drawnow
end
title 'Numerical solution'
xlabel 'x''', ylabel 'T'''
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function [xd,Td] = analytic_soln_finite(td,Nx,Nn)
% Input:
% td = dimensionless time
% Nx = number of gridpoints
% Nn = numer of terms in the Fourier series
 
% Output:
% xd = dimensionless distance
% Td = dimensionless temperature
[xd] = linspace(0,1,Nx)';
Td = zeros(Nx,1);
for n = 1:Nn
    Td = Td + 1/(2*n-1)*sin((n-.5)*pi*xd)*exp(-(n-.5).^2*pi^2*td);
end
Td = 4/pi*Td;
end
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