Conductive cooling of a finite domain
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Dimensional Problem

To determine the cooling timescale of a finite domain of length, L, with initial temperature, 7,, and boundary
temperature, 7,, we need to solve the following Initial and Boundary Value Problem (IBVP)

PDE: p(,‘i,%—}:— V-[kVT]=0 on xe[0,L] and t > 0.

BCs: T(x=0,1)=7T, and VT-n|._,=0.
IC: T(x,t=0)=T, on xe&[0,L]

Here we assume that ¢, and « are constant so that the problem is linear. Note that we assume
that 7, > 7, so that AT =7,- T, > 0.

This problem has six paramters: L, ¢, p, k, T, and T,

To determine how many independent paramters this problem has we non-dimensionalize the
variables, T, x and ¢ by choosing the following characteristic scales.
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Here we have chosen external scales imposed by the domain size and boundary for T and x. There is no
external scale for r and here we just use a generic characteristic time, r_, that will be determined by the

equation itself.

Dimensionless Problem

Substituting the generic scales we obtain the following problem

PDE: %:nv?r on xef0,1]and 1 >0.

BC's: T(0,/)=0 and V7' -n|. _ =0.
IC: T'(x,00=1 on xe0,1]

where the dimensionless group 1T = Kl _ I s the ratio of t. and the internal diffusive

pc, L= 1p

- 12 2 . . . . .
timescale 1, = pepl % where p = _K_ is the thermal diffusivity. To simplify the problem we choose
K

PCp




the internal diffusive timescale as characteristic scale ¢, = ¢,,. So that the final dimensionless problem is
parameter free and here written in one dimension as

ppE: 9T _ 9T o €[0,1] and ¢ > 0.
ar' ox'?
BCs: T(0,1)=0 and 9| =o.

ox' .
x =1

IC:  T'(x,00=1 on xe[0,1]

Analytic solution

The analytic solution is obtained by separation of variables, 7'(x',¢) = g(¢')h(x’) and the dimensionless
solution is given by

T(x,t) = % i 2”1_ : sin ((n - %) ;rx’) exp (— (n— %)zﬁzt')

n=1

The corresponding dimensional solution is obtained by substituting the definitions of the dimensionles
variables and given by

® (n—_)n’x (n —%) xD
T(x,:):TﬁffMZz”l_lsin + exp |~

n=1

For simplicity we work with the dimensionless solution below.
Nt = 20; Nx = 1le3; Nn = le2;

tvec = logspace(-4,2,Nt);

figure

map = colormap (parula (Nt+1));

plot ([0 1],([1 1], 'color',map(l,:)), hold on

for i = 1:Nt
[xd, Td] = analytic soln finite(tvec(i),Nx,Nn);
plot (xd,Td, 'color',map (i+1l,:))

end

title 'Analytical solution'

xlabel 'x''', ylabel 'T''"''
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Convergence of the series

The analytic solution is a sum of sin functions of increasing wave number that are superposed to generate
the solution

Nx = le3; Nn = 8;

figure

map = colormap (jet (Nn)) ;

for i = 1:Nn
[xd, Td] = analytic soln finite(.01,Nx,1i); hold on
plot (xd,Td, 'color',map (i, :))

end

legend('n=1"', 'n=2"','n=3"','n=4"','n=5",'n=6",'n=7"', 'n=8"', '"location', 'southeast')
xlabel 'x''', ylabel 'T"'"'
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Temperature decay

The contribution of each eigenfunction/mode decays proportional to its eigenvalue. The higher order modes
decay quickly and at late time the solution is well approximated by the first mode.
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The figure show the decay of the maximum temperature from the full solution and the approximation

Nt = 200; Nx = 2;
tvec = linspace(0,1,Nt);
Nt,1); Td max approx = Td max;

Td max = zeros

figure

for i = 1:Nt
[xd, Td] = analytic soln finite(tvec(i),Nx,1le3);
Td max (i) = Td(2);
[xd, Td] = analytic soln finite(tvec(i),Nx,1);
Td max approx (i) = Td(2);

end

semilogy (tvec,Td max, 'r-"'), hold on

semilogy (tvec, Td max approx, 'k:')

ylabel 'max(T'')', xlabel 't''"''



legend('full soln', 'lst term')

", —— full soln
0 R 1st :erm
10 o
E
=
[+
E
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
tl
drawnow

Heat flow (to be continued)

The heat flow at the boundary is given by Fourier's law in its dimensionless form

aTr
= —Kk_
9 dx
or in dimensionless form

T

1= "%

if we introduce the caracteristic scale, g. = K % for the heat flow. Differentiating the analytic solution we

have

Numerical solution



Below is the code to solve the dimensionless problem numerically

tmax = 1;
Nt = 50;
theta = 0;

)

% Grid and operators

Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 30;
Grid = build grid(Grid);

[D,G,~,I,M] = build ops(Grid):;

L = -D*G; fs = zeros(Grid.Nx,1);

IM = @(theta,dt) I + (l-theta)*dt*L;

EX = @ (theta,dt) I - theta*dt*L;

% Boundary conditions

BC.dof dir = Grid.dof xmin;
BC.dof f dir = Grid.dof f xmin;
BC.g =0

BC.dof neu = [];
BC.dof f neu [1;
BC.gb =[]

[B,N, fn] = build bnd(BC,Grid, I);

’

% Initial condition
u = ones (Grid.Nx,1);

figure
map = colormap (parula (Nt+1l));
plot (Grid.xc,u, 'color',map(l,:)), hold on

)

% Timestepping
dt max = Grid.dx"2/2;
dt = tmax/Nt;

time = zeros (Nt+1,1);

for n = 1:Nt
time (n+l) = time(n) + dt;
u = solve lbvp (IM(theta,dt),dt*fs+EX(theta,dt)*u,B,BC.g,N);
plot (Grid.xc,u, '-','color',map(n+l,:)), drawnow

end

title 'Numerical solution'
xlabel 'x''', ylabel 'T'''



Numerical solution

TI

0.2} =

function [xd,Td] = analytic soln finite (td,Nx,Nn)
Input:

td = dimensionless time

Nx = number of gridpoints

o oo

o°

% Nn = numer of terms in the Fourier series
% Output:

% xd = dimensionless distance

% Td = dimensionless temperature

[xd] = linspace(0,1,Nx)"';

Td = zeros(Nx,1);

for n = 1:Nn
Td = Td + 1/(2*n-1) *sin((n-.5) *pi*xd) *exp (- (n-.5) . "2*pi~2*td) ;
end
Td = 4/pi*Td;
end



