
Compute fluxes

clc, clear
set_demo_defaults

We regularly compute fluxes of the gradients of scalar potential fields:

where h is the scalar field. The discrete approximation can be computed with the discrete gradient as

q = -KGh .

This works in the interior of the domain, but it fails on the boundary due to the natural (no flow) boundary
conditions implemented in G. We can illustrate this with a simple example of uniform one dimensional flow as
given by the following problem:

PDE: on

BC: and

This problem has the simple analytic solution and .

ha = @(x) 1-x; qa = @(x,K) K + 0*x; xa = linspace(0,1,1e2);

The numerical solution is computed as follows

% Grid and operators
K = 1;
Grid.xmin = 0; Grid.xmax =1; Grid.Nx = 10;
Grid = build_grid(Grid);
[D,G,C,I,M] = build_ops(Grid);
L = -D*K*G;
fs = spalloc(Grid.N,1,0);

% Dirichlet BC's
BC.dof_dir = [Grid.dof_xmin;Grid.dof_xmax];
BC.g = ha(Grid.xc(BC.dof_dir));
[B,N,fn] = build_bnd(BC,Grid,I);

% Solve problem and compute flux
h = solve_lbvp(L,fs,B,BC.g,N);
q = -K*G*h;

% plot solution
figure('position',[10 10 1200 600])
subplot 121
plot(xa,ha(xa),'b-'), hold on
plot(Grid.xc,h,'ro','markersize',12,'markerfacecolor','w')
xlabel 'x', ylabel 'h'
pbaspect([1 .8 1])

1

subplot 122
plot(xa,qa(xa,K),'b-'), hold on
plot(Grid.xf,q,'ro','markersize',12,'markerfacecolor','w')
xlabel 'x', ylabel 'q'
pbaspect([1 .8 1])

The flux computation fails on the boundary, because the gradient is set to zero by G.

Reconstruction of boundary fluxes

We use the discrete balance in the boundary cell to compute the unknown boundary flux exactly. Consider
the discrete linear system

Lh = fs

with the discrete residual equation

r = Lh - fs

If the discrete equations are satisfied the residual vanishes, r = 0. This is true in the interior but not on the
boundary because the boundary flux has been set to zero.

res = @(h) L*h-fs;
figure('position',[10 10 1200 600])
plot([0,1],[0 0],'b-'), hold on
plot(Grid.xc,res(h),'ro','markersize',12,'markerfacecolor','w')
xlabel 'x', ylabel 'r'
pbaspect([1 .8 1])

2

Relation between fn and r

The non-zero residual in the boundary cells contains information about the unknown boundary flux. To see
this consider the discrete system with a Neumann flux boundary

Lh = fs + fn

where fn is the addtional r.h.s. term due to the boundary fluxes. By definition of the residual, r = Lh - fs,
we have thar

r = fn.

In other words the residual is equal to the r.h.s. due to fluxes! In the center of the doamin fn = 0, but not
on boundaries with prescribed fluxes. The entries of fn corresponding to boundary cells are given by

where and A are the prescribed flux on and area of the boundary face and Vis the volume of the boundary

cell. If we are given instead of qb we can reverse the argument and solve for the boundary flux

 (up to sign!).

Note: We assume that each boundary cell has only one face with a boundary flux. In higher dimensions cells
along edges or corners can have multiple faces with boundary fluxes. In that case the residual has to be
distributed onto multiple faces, but we will not discuss this here.

r = res(h);
q(1) = r(1)*Grid.V(1)/Grid.A(1);
q(Grid.Nf) = r(Grid.N)*Grid.V(Grid.N)/Grid.A(Grid.N);

3

q(1)

ans = 1

q(Grid.Nf)

ans = -1.0000

figure('position',[10 10 1200 600])
plot(xa,qa(xa,K),'b-'), hold on
plot(Grid.xf,q,'ro','markersize',12,'markerfacecolor','w')
xlabel 'x', ylabel 'q'
pbaspect([1 .8 1])

There is clearly a sign problem on the xmax side of the domain.

Sign change on max-boundary

We want that the q reconstructed on the boundary has a sign so that it fits with the rest of the fluxes
computed from Darcy's law: q = -Kd*G*h. In this vector fluxes in increasing x-direction are positive. In our
reconstruction fluxes into the domain are positive.

4

Therefore, we have to change the sign on the xmax boundary.

q(Grid.Nf) = - r(Grid.N)*Grid.V(Grid.N)/Grid.A(Grid.N);

figure('position',[10 10 1200 600])
plot(xa,qa(xa,K),'b-'), hold on
plot(Grid.xf,q,'ro','markersize',12,'markerfacecolor','w')
xlabel 'x', ylabel 'q', ylim([0 1.2])
pbaspect([1 .8 1])

5

