
Transition from 1D to 2D
clear all, close all, clc
set_defaults()

Dimension independent syntax
One benefit of the operator implementation is that it hides the details of the coordinate system and spatial 
dimensions similar to the dyadic notation (div, grad, curl). Consider the instantaneous problem for a steady 
confined aquifer in both 1D and 2D:

PDE:             on   

BC:            and     .

The answer to this somewhat boring problem is simply: . 

This problem can be solved as a 1D or a 2D problems and we'll use it here to illustrate the differences between 
1D and 2D implementations.

One of the main aims of the operator implementation is to hide the dimensionality and coordinate system in the 
same way that the dyadic notation hides these details. Therefore, nothing will change on the highest layer of 
your code - as demonstrated in the example below.

% Define the grid and operators
clear Grid
Grid.xmin = 0; Grid.xmax = 1; Grid.Nx = 100;
Grid.ymin = 0; Grid.ymax = 1; Grid.Ny = 100;  % The only line that changes
% Grid.geom = 'cartesian';
Grid = build_grid(Grid);
[D,G,~,I,M] = build_ops(Grid);
L = -D*G; fs = spalloc(Grid.N,1,0);

% Define the boundary conditions
BC.dof_dir   = [Grid.dof_xmax];
BC.dof_f_dir = [Grid.dof_f_xmax];
BC.g         = [zeros(Grid.Ny,1)];
BC.dof_neu   = [Grid.dof_xmin];
BC.dof_f_neu = [Grid.dof_f_xmin];
BC.qb        = ones(Grid.Ny,1);
[B,N,fn] = build_bnd(BC,Grid,I);

% Solve for head
u = solve_lbvp(L,fs+fn,B,BC.g,N);

figure('position',[10 10 500 500])
% Plot solution (o.k., the plotting changes as well)
if Grid.Ny == 1
    plot(Grid.xc,u,'-')
    xlabel 'x', ylabel 'h'

1



else
    [X,Y] = meshgrid(Grid.xc,Grid.yc);
    [C,h] = contourf(X,Y,reshape(u,Grid.Ny,Grid.Nx),100); colorbar
    set(h,'LineColor','none')
    xlabel 'x', ylabel 'y', title '2D'
    axis equal
end

Changes to main functions
Of course, the changes required to go from 1D to 2D are just hidden in the functions that have been called. The 
following functions you have written must be updated:

1. build_grid(): need to add all the information about the 2D grid - substantial change (trivial)
2. build_ops(): implement 2D operators - substantial change 

The following functions that do not need to be changed:

1. comp_mean()
2. build_bnd()
3. solve_lbvp()

2



4. comp_flux()

These functions don't change, because the BC's are implemented as an elimination of constraints, which is 
independent of dimension. Benefit of the slightly more abstract approach.

Life is more interesting in 2D
Even the simple steady confined aquifer problem can be made more interesing in 2D with some heterogeneity. 
In general, the hydraulic conductivity is a function of x, so that

Here we generate a simple Gaussian conductivity field 

seed = 2061976;
sigma = 0.3;
rho = 1;
[logK,gamma,delta] = 
comp_matern(sigma,rho,Grid,D,G,I,seed);                   
logK = reshape(logK,Grid.Ny,Grid.Nx);

figure('position',[10 10 800 500])
subplot 121
[C,h2] = contourf(X,Y,logK,25); colorbar
set(h2,'LineColor','none')
set(gca,'xtick',[0 .5 1],'ytick',[0 .5 1])
xlabel 'x', ylabel 'y', title 'log_{10}(\kappa)'
axis equal

3



Then we can solve for the 2D head variation with the same  boundary conditions as before. The head will 
preferentially drop in areas of low conductivity and be almost constant in region of high conductivity.

K = 10.^(logK(:));
Kd = comp_mean(K,M,-1,Grid,1);
L = -D*Kd*G;

% Solve for Head
u = solve_lbvp(L,fs+fn,B,BC.g,N);
subplot 122
[C,h3] = contourf(X,Y,reshape(u,Grid.Ny,Grid.Nx),100); colorbar
set(h3,'LineColor','none')
set(gca,'xtick',[0 .5 1],'ytick',[0 .5 1])
axis equal
xlabel 'x', ylabel 'y', title '2D: confined head'

4



Again this was achieved with minimal changes to the code, we simply had to add the Kd matrix into the linear 
operator, L = -D*Kd*G.

Auxillary functions
set_defaults()
function [] = set_defaults()
set(0, ...
    'defaultaxesfontsize',   18, ...
    'defaultaxeslinewidth',   2.0, ...
    'defaultlinelinewidth',   2.0, ...
    'defaultpatchlinewidth',  2.0,...
    'DefaultLineMarkerSize', 12.0);
end

comp_matern()
This is a function that computes correlated random fields with Matern covariances by solving the equivalent 
modified Helmholtz equation.

5



function [m,gamma,delta] = comp_matern(sigma,rho,Grid,D,G,I,seed) % MDOT 
repo

coeff = 3.6e-07; % handcrafted, locally sourced
% 6.3441e-06 - 1 by 1 domain
% 9.7629e-06 - 2 by 2 domain
% 9.0255e-06 - 3 by 3 domain
% 8.6570e-06 - 4 by 4 domain

gamma =sqrt(coeff)/2*rho/sigma;
delta = 2*sqrt(coeff)/(rho*sigma);

L = -gamma*D*G+delta*I;
rng(seed);
fs = randn(Grid.N,1);

Param.dof_dir = [];
Param.dof_f_dir = [];
Param.g = [];
Param.dof_neu = [];
Param.dof_f_neu = [];
Param.qb = [];

[B,N,fn] = build_bnd(Param,Grid,I);
m = solve_lbvp(L,fs+fn,B,Param.g,N);
end

6


