
Non Cartesian Coordinates (1D)
clear, close all, clc
set_defaults()

The advantage of the dyadic notation ( , , ) is that it hides the coordinate system. Here we show that the 
same can be achived by the discrete operators. Currently we have only discretized one coordinate direction, but 
this already allows three different coordinate systems

• linear (1D)
• cylindrical radial (2D)
• spherical radial (3D)

Cylindrical Coordinates               Spherical Coordinates

The gradient is identical in all three coordinate systems: 

Here we also use the independent variable x to denote the radial direction in 2D and 3D.

In contrast to the gradient the divergence changes with the coordinate system

• linear (1D): 

• cylindrical radial (2D): 

• spherical radial (3D): 

Therefore we can write the general radial divergence in d dimensions as: 

Geometric interpretation of the radius terms

1



The key to the correct discretization is the geometric understanding of the two radius terms in the divergence. 
To facilitate this consider the equation for one-dimensional incompressible groundwater flow

in compact dyadic notation   

or written explicitly in terms of the radial coordinate  .

Note, here we have multiplied through by , so that it is on the right hand side. In this form, the geometric 
origin of the two radius terms becomes clearer.

• The term  suggests that this  represents that growth of the interfacial area with increasing 
radius, because  is associate with the flux. This radius term should therefore evaluated at the cell faces 
Grid.xf.

• The term  suggests that this  represents the growth of the volume with increasing radius, 
because  is the volumetic source term. This radius term should therefore be evaluated at the cell 
centers Grid.xc.

Test problem 1: Steady state flow near a well
Flow near a groundwater well is a common problem in hydrogeology. The well typically has a casing, i.e., 
a steal tube, that prevents water leakage from formations above the aquifer. In the aquifer the casing is 
perforated, i.e., has holes, to allow groundwater to enter or exit the well. The near well flow depends on the 
distribution of perforations in the aquifer inteval of the well:

1. Well is uniformly perforated over the entire aquifer interval (left) for that water can flow acriss the entire 
height so that the flow has cylindrical geometry.

2. Well is only locally perforated (right). If this local perforation is in the center of the aquifer interval the 
near well flow has spherical geometry.
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The cylindrical case is imilar to the injection well problem we considered in Lecture 3. Except here we prescribe 
the head at the well instead of the flow rate.

The problem statement for the near well flow is given by

PDE:   for  

with the Dirichlet BC's  and , where .

The analytic solutions for the head are given by

• linear (1D): 

• clylindrical (2D): 

• spherical (3D): 

The corresponding fluxes are given by

• linear (1D): 
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•
cylindrical (2D): 

• spherical (3D): 

We assume the folowing values, we use the ana

cm2m = 1/100;        % cm to m conversion
yr2s = 365*24*60^2;  % yr to s conversion

xmin = .5;   % well radius
xmax = 100;  % domain radius
h2 = 1;    % far-field head
Qw = 1;    % well flow rate
H = 1;     % aquifer thickness
K = 1;     % hydraulic conductivity
Aw = 2*pi*xmin*H; % wellbore area
% rlim = [param.rw,param.r0];

ha = @(x) h2 - Qw/2/pi/H/K * log(x/xmin);

Here we use the anaytic solution from class to compute the head at the well from the flow rate

h1 = ha(xmin);
h2 = 0;
xana = linspace(xmin-1e-2,xmax,1e3);
h1d_ana = @(x) h1 + (h2-h1)/(xmax-xmin)*(x-xmin);
h2d_ana = @(x) h1 + (h2-h1)*log(x/xmin)/log(xmax/xmin);
h3d_ana = @(x) h1 + (h2-h1)/(1/xmax-1/xmin)*(1./x-1/xmin);

q1d_ana = @(x) -K*(h2-h1)/(xmax-xmin)+x*0;
q2d_ana = @(x) -K*(h2-h1)/log(xmax/xmin)*1./x;
q3d_ana = @(x) K*(h2-h1)/(1/xmax-1/xmin)*1./(x.^2);

Discretization of the divergence
The radial component of the discrete divergence matrix in cylindital and spherical geometry can therefore be 
obtained as follows

Grid.xmin = xmin; Grid.xmax = xmax; Grid.Nx = 35;
Grid = build_grid(Grid);
[D,G,C,I,M] = build_ops(Grid);
fs = spalloc(Grid.Nx,1,0);

% General radial coordinate system
Rinv = @(d) spdiags(1./Grid.xc.^(d-1),0,Grid.Nx,Grid.Nx);
R = @(d) spdiags(Grid.xf.^(d-1),0,Grid.Nfx,Grid.Nfx);
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D = @(d) Rinv(d)*D*R(d);
L = @(d) -D(d)*K*G;
flux = @(h) -K*G*h;
L1 = L(1); res1d = @(h,cell) L1(cell,:)*h - fs(cell);
L2 = L(2); res2d = @(h,cell) L2(cell,:)*h - fs(cell);
L3 = L(3); res3d = @(h,cell) L3(cell,:)*h - fs(cell);

Set Dirichlet boundary conditions

BC.dof_dir   = [Grid.dof_xmin;Grid.dof_xmax];
BC.dof_f_dir = [Grid.dof_f_xmin;Grid.dof_f_xmax];
BC.dof_neu   = [];
BC.dof_f_neu = [];

% 1D - linear
BC.g = h1d_ana(Grid.xc(BC.dof_dir));
[B,N,fn] = build_bnd(BC,Grid,I);
h1d = solve_lbvp(L(1),fs+fn,B,BC.g,N);
q1d = comp_flux_gen(flux,res1d,h1d,Grid,BC);

% 2D - cylindrical
Grid.geom = 'cylindrical_r'; Grid = build_grid(Grid); % update Grid.A and 
Grid.V
BC.g = h2d_ana(Grid.xc(BC.dof_dir));
h2d = solve_lbvp(L(2),fs+fn,B,BC.g,N);
q2d = comp_flux_gen(flux,res2d,h2d,Grid,BC);

% 3D - spherical
Grid.geom = 'spherical_r'; Grid = build_grid(Grid); % update Grid.A and 
Grid.V
BC.g = h3d_ana(Grid.xc(BC.dof_dir));
h3d = solve_lbvp(L(3),fs+fn,B,BC.g,N);
q3d = comp_flux_gen(flux,res3d,h3d,Grid,BC);

figure('position',[10 10 1200 600])
subplot 121
plot(xana,h1d_ana(xana),'b-'), hold on
plot(xana,h2d_ana(xana),'r-')
plot(xana,h3d_ana(xana),'k-')
p1 = plot(Grid.xc,h1d,'bo','markerfacecolor','w','markersize',8); hold on
p2 = plot(Grid.xc,h2d,'ro','markerfacecolor','w','markersize',8);
p3 = plot(Grid.xc,h3d,'ko','markerfacecolor','w','markersize',8);
xlabel 'x or r', ylabel 'h'
pbaspect([1 .8 1])
legend([p1 p2 p3],'lin (1D)','cyl (2D)','sph (3D)')

subplot 122
plot(xana,q1d_ana(xana),'b'), hold on
plot(xana,q2d_ana(xana),'r')
plot(xana,q3d_ana(xana),'k')
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l1 = plot(Grid.xf,q1d,'bo','markerfacecolor','w','markersize',8);
l2 = plot(Grid.xf,q2d,'ro','markerfacecolor','w','markersize',8);
l3 = plot(Grid.xf,q3d,'ko','markerfacecolor','w','markersize',8);
xlabel 'x or r', ylabel 'q'
xlim([0 20])
pbaspect([1 .8 1])
legend([l1 l2 l3],'lin (1D)','cyl (2D)','sph (3D)')

If we set the boundary conditions using the analytical solution at the cell centers, the numerical solution 
matches the anaytic solution very well. Our discrete divergence in cylindrical and spherical radial coordinates is 
therefore correct.

Note how the head decays more rapidly with distance in higher coordinates. This is because the fluid flow is 
distributed into shells of in creasing volume in 2D and 3D. 

Test problem 2: Cylindical aquifer beneath a (near) circular island
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The island of Ihavandhoo (Maledives) has a mean diameter of R = 435 m, an annual rainfall of =1779 mm 
and a fresh water lens of approximately b = 7 m thickness. Inhabitant rely on this groundwater and a small 
desalination plant for all their ptable water needs. The real problem of groundwater on islands is complicated 
because the aquifer is typically unconfined and the fresh water interacts with the denser sea water beneat to 
form a lense that thins towards the edges of the island. Here we will simply assume that the aquifer is confined 
and has a rectangular cross-section with average height, b. The shallow aquifer model is then given by 

To compute the steady temerature profile in an asteroid of radius, R, heated uniformly by radioactive decay we 
solve

  for  
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with the Dirichlet BC  and the natural (no flow) BC at the center. Note that including the origin, , is 
not a problem because the term  is evaluated at cell centers!

The analytic solution for the head of the island aquifer is given by

The fluid flux in the aquifer is given by

.

R = 435;             % Island radius [m]
K =2e-2*cm2m;        % Hydraulic conductivity [m/s]
b = 7;               % freash water lens thickness [m]
qp = 177.9*cm2m/yr2s;  % Average annual precipitation [m3/m2/s]

% Analytical solution
xa_island = linspace(0,R,1e3);
ha_island = @(x) qp/(4*b*K)*(R^2-x.^2);
qa_island = @(x) qp/(2*b)*x;

% Numerical solution
Grid.xmin = 0; Grid.xmax = 435; Grid.Nx = 15;
Grid.geom = 'cylindrical_r'; 
Grid = build_grid(Grid);
[D,G,C,I,M] = build_ops(Grid);
fs = qp/b*ones(Grid.Nx,1);
L = -D*K*G;
flux_island = @(h) -K*G*h;
res_island = @(h,cell) L(cell,:)*h-fs(cell);

% Set boundary conditions
BC.dof_dir = [Grid.dof_xmax];
BC.dof_f_dir = [Grid.dof_f_xmax];
BC.g = ha_island(Grid.xc(BC.dof_dir));
BC.dof_neu = [];
BC.dof_f_neu = [];
BC.qb = [];
[B,N,fn] = build_bnd(BC,Grid,I);

h_island = solve_lbvp(L,fs+fn,B,BC.g,N);
q_island = comp_flux_gen(flux_island,res_island,h_island,Grid,BC);

figure('position',[10 10 1200 600])
subplot 121
plot(xa_island,ha_island(xa_island),'b-'), hold on
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plot(Grid.xc,h_island,'bo','markerfacecolor','w','markersize',8)
pbaspect([1 .8 1])
xlabel 'r [m]', ylabel 'h [m]'

subplot 122
plot(xa_island,qa_island(xa_island),'b-'), hold on
plot(Grid.xf,q_island,'bo','markerfacecolor','w','markersize',8), hold on
pbaspect([1 .8 1])
xlabel 'r [m]', ylabel 'q [m/s]'

Auxillary functions
set_defaults()
function [] = set_defaults()
    set(0, ...
    'defaultaxesfontsize',   18, ...
    'defaultaxeslinewidth',   2.0, ...
    'defaultlinelinewidth',   2.0, ...
    'defaultpatchlinewidth',  2.0,...
    'DefaultLineMarkerSize', 12.0);
end
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