Boundary Conditions: Dirichlet BC

clear all, close all, clc
set_defaults()

Example problem: Danube-Tisza Interfluve

The area is popuar for hydrological studies because the rivers run parallel for more than 100 km (see map)
with very little change in elevation. This setup a geometry that can be approximated by a two-dimensional
cross-section.

%% Physical properties
cm2m = 1/100;
yr2s = 365%24%60"2;

cm to m conversion
yr to s conversion

o® o°

Length = 85070;
Width = 5430;
K =2e-2%xcm2m;

Distance between Danube and Tisza rivers [m]
Width of segment considered [m]
Hydraulic conductivity [m/s]

o ° ° o o ° o°

gp = 1.5%cm2m/yr2s; Average annual precipitation [m3/m2/s]
hD = 90; Elevation of Danube river[m]

hT = 80; Elevation of Tisza river [m]

b = 100; Aquifer thickness [m]

Simplified shallow aquifer model
After vertically integrating we obtain the shallow aquifer model for the interfluve:

pDE: V- [bKVH| =4/ on x e 0.1]
BC: h(0)=hp=90m and h(x=L)=hr=80m

Here the tilde on the divergence and gradient operators indicates that they only contain horizontal derivatives,
because we have integrated in the vertical.

In 1D the PDE can also simply be written as

_4d
dx

[bth] =dp

dx

and solved by integrating twice to obtain the following solutions for the head # and flux ¢

_ gpL _hp—hr_ qp
h_hD+(2bK L)x Nl

=@(_é) K., _
9=3*=3 +L(hD hr)

% Analytic solution

xa = linspace(0@,Length,le2);

ha = @(x,qp) hD + (gpxLength/2/b/K-(hD-hT)/Length)*xx - qp/2/b/Kxx.”"2;
ga = @(x,qgp) gp/bx(x-Length/2) + K/Lengthx(hD-hT);

xmax = @(qgp) Length/2 - (Kxbx(hD-hT))/(qpxLength);

gp_crit = 2xKxbx(hD-hT)/Length”2

gp_crit = 5.5272e-11

Numerical solution
The head of a pore fluid, #, is given by the Poisson equation

—V%:Z—I";OH xe[0,L],

where f; is a source term and the two boundary condtions as applied heads of the Danube and Tisza rivers
h(x=0) = hp and h(x = L) = hr.

Using discrete operators the partial differential equation can be discretized as follows

Lxh = fs

where L = -DxG is the dicrete Laplacian operator, h is the unknown vector of temperatures and fs is the right
hand side vector. Today we will discuss how to discretize the boundary condtions.

Without boundary conditions the problem is ill-posed and does not have a solution. This is reflected in the
condition number of the discrete Laplacian operator, L.

Grid.xmin = @; Grid.xmax = Length; Grid.Nx = 20;
Grid = build_grid(Grid);

[D,G,C,I,M] = build_ops(Grid);

L = -DxG; % (assume unit thermal conductivity)
condest(L)

ans = Inf

A matrix with infinite condition number has no inverse. This is because there is an infinite number of possible
solutions to the Laplace equation, only the boundary conditions (BC's) make the solution unique.

Dirichlet BC's prescribe the solution on the boundary. In the discrete solution they prescribe the solution in the
cells neighboring the boundaries. This constraint can be formulated as a linear system,

Bxh = g

where B is the constrain matrix, u is the vector of unknowns (temperature), and g is a right hand side vector.
The constrain matrix B is Nc by Nx, where Nc is the number of constraints, i.e., cells along Dirichlet boundaries
with prescibed temperatures. This means that Dirichlet BC's provide constraints that reduce the overall number
of unknown we need to solve for.

Therefore the boundary value problem is described by two linear systems

1) Lxh

fs, arising from the PDE, where L is the Nx by Nx system matrix

2) Bxh

g, arising from the BC's, where B is the Nc by Nx constraint matrix

Neither L nor B is invertible, both allow infinite solutions. To find the unique solution to the boundary value
problem, the constraints in B must be eliminated from the system matrix L.

= we need to understand how to eliminate constraints

Building the constraint matrix
Suppose we have the following two Nc by 1 column vectors:

1. dof_dir: contains the degrees of fredom (dofs), i.e., cell numbers, of all cells along the Dirichlet
boundary.
2. g: contains the prescribed values the unknown is set to along the Dirichlet boundary.

The constraint matrix, B, needs to set the unknown in dof_dir to g. The matrix B therefore comprises the rows
of the Nx by Nx identity matrix, I, that correspond to dof_dir. Therefore B can be built as follows

dof_dir = [Grid.dof_xmin;Grid.dof_xmax];
B = I(dof_dir,:);
size(B)

ans =
2 20

spy(B)

wnh =0
1

0 5 10 15 20
nz=2

The resulting constraint matrix has one row for every cell that is set to a prescribed value by the Dirichlet BC's.
In the 1D case with Diriclet BC's at both ends Nc = 1 and B only has 2 rows. This simple construction will
remain the same, even in higher dimensions.

Homogeneous constraints

Initially, we consider a problem with homogeneous constraints, i.e., i(x = 0) = h(x = L) = 0. To have a non-trivial
solution, i.e., T(z) # 0, with these boundary conditions we need a finite source term, £, # 0. Let's consider the

following test problem

PDE: —v?%h =22 on :
V°h g 0" X € [0,L]

BC's: h(0) = (1) =0,

with the analytic solution T = %(x -3).

ha_hom = @(x,qp) (gpxLength/2/b/K)*x — qp/2/b/Kxx."2;

ga_hom = @(x,qp) gqp/bx(x-Length/2);
% u_ana = @(x) .5k(x-x.72);
% x_ana = linspace(Grid.xmin,Grid.xmax,1e2);

4

figure('position', [10 10 900 600])
subplot 211
plot(xa/le3,ha_hom(xa,qp),'b-"), hold on
xlabel 'distance [km]'

ylabel 'head [m]'

subplot 212

plot([@ Length]l/1e3,[0 0],'k-"), hold on
plot(xa/le3,qa_hom(xa,qp)/(cm2m/yr2s), 'b-")
xlabel 'distance [km]'

ylabel 'flux [cm/yr]’

25 T T T 1 1

head [m]

1 1
0 10 20 30 40 50
distance [km]

600F T T T T

flux [cm/yr]

RN
o O
o O
T T

1
0 10 20 30 40 50
distance [km]

The discrete problem is then given by
PDE: Lxh = fs
BC's:Bxh = 0

Reduced linear system

60

70

80

90

Given that the constraints in B reduce the number of unknown we expect to solve a smaller or reduced linear
system of size (Nx-Nc) by (Nx—Nc)

Lrxhr = fsr.
Here the variables are:

1. hr is the (Nx-Nc) by 1 reduced vector of unknows.
2. fsris the (Nx-Nc) by 1 reduced r.h.s. vector.
3. Lris the (Nx-Nc) by (Nx-Nc) reduced system matrix.

Projection matrix

What is the relation between h and hr, fs and fsr, and L and Lr? Two vectors of different length are related
by a rectangular matrix

u = Nxhr and fs = Nxfsr

where N is a Nx by (Nx-Nc) matrix. Here N is any basis for the nullspace of the constraint matrix B. The
nullspace of B is simply the set of all solutions that satisfy Bxu = 0, i.e., all the possible solutions that satisfy
the homogeneous boundary conditions. If we search for solutions to Lxh=fs in the nullspace of B, then the
BC's are automatically satisfied. In Matlab the nullspace of a matrix can be found with the function null() or
spnull() for sparse matrices.

N = spnull(B);
size(N)

ans =

20 18

figure
spy(N), title 'N'

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-6-column-space-and-nullspace/
https://www.mathworks.com/help/matlab/ref/null.html
https://www.mathworks.com/matlabcentral/fileexchange/27550-sparse-null-space-and-orthogonal?focused=5152745&tab=function

o ~ DM O

12
14
16
18
20

0 5 10 15
nz=18

Assume that N is orthonormal, i.e., that the dot product between all columns is unity. the it follows that

1. N'"%N = Ir, where Iristhe (Nx-Nc) by (Nx-Nc) identity matrix in the reduced space.
2. N*N' = Ic, where Ic is the Nx by Nx "identity matrix" with Nc zeros on the diagonal.

Ir = N'xN;
size(Ir)

ans =
18 18

spy(Ir), title 'Ir'

Ir

12}
14}
16}
18}

0 5 10
nz=18
non_0_entries_Ir = full(sum(diag(Ir)))

non_0_entries_Ir = 18

Ic = NxN';
size(Ic)

ans =
20 20

spy(Ic), title 'Ic'

15

o ~ DM O

12
14
16
18
20

0 5 10 15 20
nz=18

non_0_entries_Ic = full(sum(diag(Ic)))

non_0_entries_Ic = 18

In this case, we have the following relationship, N'*h = N'xNxhr = Irxhr = hr, sothat N and N'allow us
to go forth and back between u and ur:

h = Nxhr
hr = N'xh
Of course, the same relationship exists between fsr and fs, fsr = N'xfs.

The matrix N' projects the vector of unknowns into the nullspace of B. Note that a proper projection matrix is
square, it would simply zero our the entries that are not in the nullspace. Instead, our N' matrix eliminates these
entries, but the idea is the same.

Reduced system matrix
Given the properties of N, defined above, the expression for the reduced system matrix is derived as follows

Lxh = fs
N'xLxh = N'xfs

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-16-projection-matrices-and-least-squares/

N'xLxIckxh = N'xfs
N'sxLx(NxN')»xh = N'xfs
(N'xLxN)*(N'xh) = N'xfs

Lrxhr = fsr

where
1. Lr = N'xLxN
2. hr = N'xh

3. fsr = N'xfs

Lr = N"xLxN;
size(Lr)

ans =
18 18

subplot 121

spy(L), title 'L'
subplot 122
spy(Lr), title 'Lr'

O L L O o0 Lr
5 il 5l it
o T wep T
15 Teee . cee
‘e 15} cee
20 i .
0 10 20 0 5 10 15
nz = 58 nz = 52

The reduced system matrix Lr is not singular anymore, because the constraints have been incorporated. This
can be checked by estimating the condition number

10

condest(Lr)

ans = 180.0000

Solving problem with homogeneous boundary conditions
Solving a steady problem with homogeneous boundary conditions therefore requires 3 steps:

1. Compute N and obtain Lr and fsr.
2. Solve reduced problem: hr = Lr\fsr.
3. Obtain full solution: h = Nxhr.

fs = qgp/(bxK)*ones(Grid.Nx,1);
fsr = N'xfs;

hr = Lr\fsr;

h = Nxhr;

h = h+ha_hom(Grid.xc(1),qp); % shift to account for BC
figure

plot(xa/le3,ha_hom(xa,qgp),'-"',Grid.xc/
1le3,h,'o', 'MarkerFaceColor', 'w', '"Markersize', 8)
xlabel 'x', ylabel 'u'

legend('analytic', 'numerical')

25 1 1 T L]
—— analytic
O numerical
20} .
15} .
>

10} .

5 J

0 1 1 1 1

0 20 40 60 80 100

X

Note, the boundary condition is set at the center of the first cell, which makes the solution look bad (first order
error).

11

If we shift the solution upward by the appropriate amount the fit to the analytic solution is quite good.

Heterogeneous constraints

We are interested in solving for the geotherm which requires heterogeneous, i.e., non-zero, BC's. In this case
Bxh = g,

where g = [hD;hT] is a vector containing the two boundary conditions.

clear all

Grid.xmin = @; Grid.xmax = Length; Grid.Nx = 35;
Grid = build_grid(Grid);

[D,G,I] = build_ops(Grid);

L = -D*G; fs = spalloc(Grid.Nx,1,0);

To obtain the solution of a problem with heterogeneous boundary conditions, we split the solution into a
homogeneous and a particular solution as follows

h = ho + hp,

where the homogeneous solution solves Bxh@ = 0 as before and the particular solution solves Bxhp = g.
The solution then proceeds in three steps

1. Find a particular solution that satisfies Bxhp = g.
2. Find the associated homogeneous solution, h@.
3. Find total solution h = h@ + hp.

Find a particular solution

Note there are many possible particular solutions, here we just find the simplest one. Also not that hp does not
need to satisfy Lxhp = fs it only needs to satisfy the boundary conditions Bxhp = g. Since the system is not
square and Nx > Nc and B has only Nc entries we can again project into a reduced space of size Nc.

It is natural to use B as projection matrix, so that hpr = Bxhp and hp = B'xhpr. We derive the reduced
system as follows

Bxhp = g
Bx(B'xhpr) = g
(BxB')xhpr = g
Brxhpr = ¢

where the reduced constraint matrix is Br = B*B' is Nc by Nc. For the simple constraints we use here Br is
simply the Nc by Nc identity matrix, so that hpr = g. However, our definition is also valid for more general
constraints so we'll stick with that. Once hpr is known the full particular solution can be recovered, hp =
B'xhpr.

g = [hD;hT];

12

g = [ha(Grid.xc([1;Grid.Nx]1),qp)];
dof_dir = [Grid.dof_xmin;Grid.dof_xmax];
B = I(dof_dir,:);
Br = BxB';
spy(Br)
0 Ceres geotherm
0.5} .
1} . 1
E
o 1.5} -
(4]
()
=
2 - ° -
2.5} .
3 1
0 1 2 3
nz=2
hpr = Br\g;
hp = B'xhpr;

Find associated homogeneous solution
Once up is known we find the associated homogeneous solution, h0, as follows

Lxh = fs
L«(ho+hp) = fs
Lxh® = fs — Lxhp
Lxho = fs + fd

where fd = —Lxhp is a new source term due to heterogeneous Dirichlet BC's. But the problem can be solved
with the nullspace projection for homogeneous problems as above. Combining the r.h.s. f = fs + fd we solve as
follows

I; N(:,dof_dir)=[1; % simple/fast way to generate N without spnull()

N =
fd = -Lxhp;
f =1fs + fd;

13

% Reduced system
N'xf;

% Total solution

h = h@ + hp;

figure

plot(xa/le3,ha(xa,qgp), 'b-"), hold on
plot(Grid.xc/1e3,h, 'o', 'MarkerFaceColor', 'w', 'Markersize"',8)
xlabel 'distance [km]'

ylabel 'head [m]'

pbaspect([1 .8 1])

title('Ceres geotherm')

110 . Cerles geothlerm

105

100

95

head [m]

90

85

80 . .
0 20 40 60 80 100

distance [km]

Auxillary functions
This implementation of spnull() is taken from Bruno Luong, thanks man!

function Z = spnull(S, varargin)

Z = SPNULL(S)

returns a sparse orthonormal basis for the null space of S, that is,
S*Z has negligible elements, and Z'xZ = I

o® o° o° o°

o

If S is sparse, Z is obtained from the QR decomposition.

14

https://www.mathworks.com/matlabcentral/profile/authors/390839-bruno-luong

Otherwise, Z is obtained from the SVD decomposition

o° o

Bruno Luong <brunoluong@yahoo.com>
History
10-May-2010: original version

o® o o°

o° of

See also SPORTH, NULL, QR, SVD, ORTH, RANK

if issparse(S)
[m n] = size(S);
try
[Q R E] = qr(S."); s#ok %full QR
ifm>1
s = diag(R);
elseif m ==
s = R(1);
else
s = 0;
end
s = abs(s);
tol = norm(S, 'fro') * eps(class(S));
r = sum(s > tol);
Z =0Q(:,r+l:n);
catch %#ok
% sparse QR is not available on old Matlab versions
err = lasterror(); S#ok
if strcmp(err.identifier, 'MATLAB:maxlhs')
Z = null(full(s), varargin{:});
else
rethrow(err);
end

(o]

end
else % Full matrix

Z = null(S, varargin{:});
end

end

set_defaults()

function [] = set_defaults()
set(0,
'defaultaxesfontsize', 18
'defaultaxeslinewidth', 2
'defaultlinelinewidth’, 2.
‘defaultpatchlinewidth', 2
'DefaultLineMarkerSize', 12.

end

15

