Equations with heterogeneous coefficients

clear
set_demo_defaults
col = marc_colors();

Discretization of the heterogeneous coefficient
Consider the discretization of incompressible flow with heterogenous hydraulic conductivity

Continuous equation: —V . [K(x)VAh] =f; on x € [0, L]
Discrete equation:  =D*[Kd*G]xh = fs

Here we have introduced a new (Nx+1) by (Nx+1) matrix Kd that accounts for the heterogeneous coefficient on
the cell faces.

However, the hydraulic conductivity is generally evaluated at the cell center and must be averaged to the cell
faces.

The discrete equation for the flux on the i-th face is

where K;_y, is a suitable average of K;_; and K;. This average could be either:

1. . '
Arithmetic: K;_i, = %

2. .
Harmonic: K;_,, =

1 1
—_— + —_
Ki-1 Ki
These two formulas a special cases of a general power-law mean

K= (Lxrexp)

where the arithmetic average is recovered for p =1 and the harmonic average for p = —1.

Suppose we compute a Nx+1 by 1 column vector Kmean that contains these averages to the faces. then we
could compute the flux in Matlab using elementwise multiplication

q = -Kmean.x(Gxh)
While this is correct, it does not allow us to write the linerar operator L = —DxKd*G.

An equivalent way to compute the fluxes is to place the vector Kman on the diagonal of the (nx+1) by (Nx+1)
matrix Kd and then use matrix vector multiplication



q = -Kdx(Gxh)

Therefore the matrix Kd simply contais the averages of Kfron the cells to the faces along its diagonal.

Implementation in comp_mean.m

The computation of these averages will be encapsulated in the function comp_mean.m. From the function
build_ops.m we have the M matrix which "averages" values from the cell centers to the faces. This is an
arithmetic average! Given M we can implement the averages as follows:

« arithmetic (p=1): Kmean MxK
« harmonic (p=-1): Kmean 1./(Mx(1./K))
+ general power mean: Kmean = (MxK.”p).”~(1/p)

The resultin column vector Kmean is then placed on the diagonal of the Nf by Nf matrix Kd.

Example: Heterogeneous column - Analytic solution
Consider one-dimensional flow through a column of length L = 100 cm

—VI[K(x)VhR] =0 0n x € [0, L]

with heterogeneous permeability

Ki=5x%x1073, forx < 0.2 cm
Kx) =% K2=5%107, for0.2 < x<0.4cm
K3=5%x1073, for x > 0.4 cm

and two Dirichlet boundary conditions, x; = 120 cm and az = 100 cm.

%% Parameters
= [5e-3 5e-5 5e-3 1;

K hydraulic conductivity values
1 = [20 20 60];
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The head is piecewise linear and the flux is constant. The analytic solution can be obtained computing the
heads, n,and g,, at the two interfaces between the three segments. Applying Darcy's law to each segment

hi—hg _ _thz—hl _ —K3hR_h2

=-K
! ll lz l3

we have three simultaneous equations that can be solved for p;and #,.

_ Ki\(Kzlz + LK3)hr + 11 K> K3hg

i _ Ks(Kil, + LK2)he + K1 Kohy
l —

and h, =
K\Kols + KiLKs + LLK.K3 2T TK Ko + KibKs + LEK.K;




the flux can then be obtained either by computing the weighted harmonic average of K’ and applying Darcy to

hg —

the whole column, ¢ = —K i’ or by applying Darcy's law to any segment as shown above.

%% Analytic solution

denom = K(1)*K(2)*1(3) + K(1)*x1(2)*K(3) + 1(1)*xK(2)*K(3);

hl = (K(1)*x(K(2)*1(3)+1(2)*K(3))xhL+1(1)*K(2)*K(3)*hR)/denom;
h2 = (K(3)*(K(1)*1(2)+1(1)*K(2))*xhR+1(3)*K(1)*K(2)*hL)/denom;
ha = [hL hl h2 hR];

ga = — K(1)*x(h1-hL)/1(1);

xa = [0 cumsum(1)];

figure('position', [10 10 1200 600])

subplot 121

patch([20 40 40 20],[100 100 120 120],.9%[1 1 1], 'edgecolor', 'none'), hold
on

plot(xa,ha, 'k-", 'linewidth',2)

xlabel 'x [m]', ylabel 'h [m]"'

pbaspect([1 .8 1])

subplot 122

% semilogy([@ Nx(end)],qax[1 1], 'k-",'linewidth',2), hold on

plot([0 100],9ax[1 11%x6000, 'k-",'linewidth',2) % 6000 is conversion from
m/s to cm/min!

xlim([0 1001),ylim([0 ©.5])

xlabel 'Nx', ylabel 'gq [cm/min]"'

pbaspect([1 .8 1])
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The solution shows that most of the head drop occurs in the second segment (shaded grey) where the hydraulic
conductivity is lower. This indicates that most of the energy in the flow is consumed by flowing across the low
conductivity segment.

Heterogeneous column - Numerical solution

We will test the convergence of the numerical solution for both the head and the flux with different means as the
grid is refined. We will consider the following grids

Nx = [1 2 3 45 6]%5;

Grid.xmin = 0@; Grid.xmax = xa(end);
Kvec = K;

% create custom color map

N = length(Nx);

RED = repmat(col.red,N,1);

BLUE = repmat(col.blue,N,1);

ALPHA = repmat(linspace(0,1,N)"',1,3);
COL = BLUE.*ALPHA + RED.x*(1-ALPHA);

Arithmetic Mean

figure('position', [10 10 1200 600])

subplot 121

semilogy([@ Nx(end)],qgax[1 1]%6000, 'k-"','linewidth',3), hold on
x1im( [0 Nx(end)]), ylim([le-2 1lel])

xlabel 'Nx', ylabel 'q [cm/min]'

pbaspect([1 .8 1])

subplot 122

patch([20 40 40 20],[100 100 120 120],.9%[1 1 1], 'edgecolor', 'none'), hold
on

plot(xa,ha, 'k-",'linewidth',3)

xlabel 'x [m]', ylabel 'h [m]'

pbaspect([1 .8 1])

%% Compute numerical solution
i=1;

or

—h

n = Nx

% build grid

Grid.Nx = n;

Grid = build_grid(Grid);

% Hydraulic conductivity
K = ones(Grid.Nx,1);
K(Grid.xc<xa(4)) = Kvec(3);
K

K

(Grid.xc<xa(3)) = Kvec(2);
(Grid.xc<xa(2)) Kvec(1);



semilogy(n,q(1)*6000,'0"', 'markeredgecolor',COL(1i,

end

% Dirichlet BC's

BC.dof_
BC.dof_
BC.dof_
BC.dof_

dir =
f_dir =
neu =
f_neu =

1

[Grid.dof_xmin;Grid.dof_xmax];

[Grid.dof_f_xmin;Grid.dof_f_xmax];

[]
[]

BC.g = interpl(xa,ha,Grid.xc(BC.dof_dir));

[
)

Discrete differential operators
D,G,C,I,M] = build_ops(Grid);

% Heterogeneous coefficient
Kd = spdiags(M*K,@,Grid.Nf,Grid.Nf);

L

B,

%% Solve system
h

% Linear operator & r.h.s.
= —-DxKdxG; fs

spalloc(Grid.N,1,0);

%% Build boundary operators
[B,N,fn] = build_bnd(BC,Grid,I);

= solve_lbvp(L,fs+fn,B,BC.g,N);

%% Compute fluxes
q = comp_flux(D,Kd,G,h,fs,Grid,BC);

subplot

121

x1im([@ Nx(end)]1)

subplot

122

plot(Grid.xc,h, '-
xlim([@,xa(end)])

drawnow

','color',COL(1,:)), i=i+1;

1), 'markerfacecolor', 'w")
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Harmonic Mean

figure('position', [10 10 1200 600])

subplot 121

semilogy([@ Nx(end)],qax[1 1]1%6000, 'k-"','linewidth',3), hold on
xlim([@ Nx(end)]), ylim([le-2 1lell)

xlabel 'Nx', ylabel 'gq [cm/min]'

pbaspect([1 .8 1])

subplot 122

patch([20 40 40 20],[100 100 120 120],.9%[1 1 1], 'edgecolor', 'none'), hold
on

plot(xa,ha, 'k-", 'linewidth',3)

xlabel 'x [m]', ylabel 'h [m]'

pbaspect([1 .8 1])

Compute numerical solution
% build grid
Grid.Nx = n;

Grid = build_grid(Grid);

% Hydraulic conductivity

K = ones(Grid.Nx,1);

K(Grid.xc<xa(4)) = Kvec(3);
K(Grid.xc<xa(3)) = Kvec(2);
K(Grid.xc<xa(2)) = Kvec(1);



% Dirichlet BC's

BC.dof_dir = [Grid.dof_xmin;Grid.dof_xmax];
BC.dof_f_dir = [Grid.dof_f_xmin;Grid.dof_f_xmax];
BC.dof_neu = [];

BC.dof_f _neu = [];

BC.g = interpl(xa,ha,Grid.xc(BC.dof_dir));

%% Discrete differential operators

[D,G,C,I,M] = build_ops(Grid);

% Heterogeneous coefficient

Kd = spdiags(1./(Mx(1./K)),0,Grid.Nf,Grid.Nf);

% Linear operator & r.h.s.
L = -DxKdxG; fs = spalloc(Grid.N,1,0);

%% Build boundary operators
[B,N,fn] = build_bnd(BC,Grid,I);

%% Solve system
h = solve_lbvp(L, fs+fn,B,BC.g,N);

%% Compute fluxes
q = comp_flux(D,Kd,G,h,fs,Grid,BC);

subplot 121

semilogy(n,q(1)*6000,'0", 'markeredgecolor',COL(i,:), 'markerfacecolor','w")
x1im( [@ Nx(end)])
subplot 122
plot(Grid.xc,h,'-"','color',COL(1,:)), i=i+1;
xlim([@,xa(end)])
drawnow
end
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